• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

The Splitting Game: Value and Optimal Strategies

Oliu-Barton, Miquel (2018), The Splitting Game: Value and Optimal Strategies, Dynamic Games and Applications, 8, 1, p. 157-179. 10.1007/s13235-017-0216-8

Type
Article accepté pour publication ou publié
Date
2018
Journal name
Dynamic Games and Applications
Volume
8
Number
1
Publisher
Springer
Pages
157-179
Publication identifier
10.1007/s13235-017-0216-8
Metadata
Show full item record
Author(s)
Oliu-Barton, Miquel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We introduce the dependent splitting game, a zero-sum stochastic game in which the players jointly control a martingale. This game models the transmission of information in repeated games with incomplete information on both sides, in the dependent case: The state variable represents the martingale of posterior beliefs. We establish the existence of the value for any fixed, general evaluation of the stage payoffs, as a function of the initial state. We then prove the convergence of the value functions, as the evaluation vanishes, to the unique solution of the Mertens–Zamir system of equations is established. From this result, we derive the convergence of the values of repeated games with incomplete information on both sides, in the dependent case, to the same function, as the evaluation vanishes. Finally, we establish a surprising result: Unlike repeated games with incomplete information on both sides, the splitting game has a uniform value. Moreover, we exhibit a couple of optimal stationary strategies for which the stage payoff and the state remain constant.
Subjects / Keywords
Splitting game; Games with incomplete information; Stochastic games; Mertens–Zamir system; Uniform value; State-independent signaling

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal Strategies in Zero-Sum Repeated Games with Incomplete Information: The Dependent Case 
    Oliu-Barton, Miquel; Gensbittel, Fabien (2020) Article accepté pour publication ou publié
  • Thumbnail
    Optimal strategies in repeated games with incomplete information: the dependent case 
    Gensbittel, Fabien; Oliu-Barton, Miquel (2014) Document de travail / Working paper
  • Thumbnail
    Existence of the uniform value in zero-sum repeated games with a more informed controller 
    Gensbittel, Fabien; Oliu-Barton, Miquel; Venel, Xavier (2014) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotically optimal strategies in repeated games with incomplete information and vanishing weights 
    Oliu Barton, Miquel (2019) Article accepté pour publication ou publié
  • Thumbnail
    Differential Games with Asymmetric and Correlated Information 
    Oliu-Barton, Miquel (2015) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo