Relaxation and Matrix Randomized Rounding for the Maximum Spectral Subgraph Problem
Bazgan, Cristina; Beaujean, Paul; Gourdin, Eric (2018), Relaxation and Matrix Randomized Rounding for the Maximum Spectral Subgraph Problem, in Kim, Donghyun; Uma, R. N.; Zelikovsky, Alexander, 12th International Conference on Combinatorial Optimization and Applications (COCOA 18), Proceedings, Springer : Cham, p. 108-122. 10.1007/978-3-030-04651-4_8
Type
Communication / ConférenceDate
2018Conference title
12th International Conference on Combinatorial Optimization and Applications (COCOA 2018)Conference date
2018-12Conference city
Atlanta, GAConference country
United StatesBook title
12th International Conference on Combinatorial Optimization and Applications (COCOA 18), ProceedingsBook author
Kim, Donghyun; Uma, R. N.; Zelikovsky, AlexanderPublisher
Springer
Published in
Cham
ISBN
978-3-030-04650-7
Number of pages
756Pages
108-122
Publication identifier
Metadata
Show full item recordAuthor(s)
Bazgan, CristinaLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Beaujean, Paul
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Gourdin, Eric
Orange Labs [Issy les Moulineaux]
Abstract (EN)
Modifying the topology of a network to mitigate the spread of an epidemic with epidemiological constant λ amounts to the NP-hard problem of finding a partial subgraph with maximum number of edges and spectral radius bounded above by λ. A software-defined network (SDN) capable of real-time topology reconfiguration can then use an algorithm for finding such subgraph to quickly remove spreading malware threats without deploying specific security countermeasures. In this paper, we propose a novel randomized approximation algorithm based on the relaxation and rounding framework that achieves a O(logn) approximation in the case of finding a subgraph with spectral radius bounded by λ∈(logn,λ1(G)) where λ1(G) is the spectral radius of the input graph and n its number of nodes. We combine this algorithm with a maximum matching algorithm to obtain a O(log2n) approximation algorithm for all values of λ. We also describe how the mathematical programming formulation we give has several advantages over previous approaches which attempted at finding a subgraph with minimum spectral radius given an edge removal budget.Subjects / Keywords
Approximation algorithm; Relaxation and rounding; Semidefinite programming; Spectral graph theory; Random graphsRelated items
Showing items related by title and author.
-
Bazgan, Cristina; Beaujean, Paul; Gourdin, Eric (2022) Article accepté pour publication ou publié
-
Bazgan, Cristina; Chlebíková, Janka; Dallard, Clément; Pontoizeau, Thomas (2019) Article accepté pour publication ou publié
-
Bazgan, Cristina; Toubaline, Sónia; Vanderpooten, Daniel (2010) Communication / Conférence
-
Bazgan, Cristina; Toubaline, Sónia; Vanderpooten, Daniel (2013) Article accepté pour publication ou publié
-
Bazgan, Cristina; Toubaline, Sónia; Vanderpooten, Daniel (2013) Article accepté pour publication ou publié