Proportionally dense subgraph of maximum size: Complexity and approximation
Bazgan, Cristina; Chlebíková, Janka; Dallard, Clément; Pontoizeau, Thomas (2019), Proportionally dense subgraph of maximum size: Complexity and approximation, Discrete Applied Mathematics, 270, p. 25-36. 10.1016/j.dam.2019.07.010
Type
Article accepté pour publication ou publiéDate
2019Journal name
Discrete Applied MathematicsVolume
270Publisher
Elsevier
Pages
25-36
Publication identifier
Metadata
Show full item recordAuthor(s)
Bazgan, CristinaLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Chlebíková, Janka
School of Computing [Portsmouth]
Dallard, Clément
School of Computing [Portsmouth]
Pontoizeau, Thomas
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We define a proportionally dense subgraph (PDS) as an induced subgraph of a graph with the property that each vertex in the PDS is adjacent to proportionally as many vertices in the subgraph as in the graph. We prove that the problem of finding a PDS of maximum size is APX-hard on split graphs, and NP-hard on bipartite graphs.Subjects / Keywords
Dense subgraph; Approximation; Complexity; Hamiltonian cubic graphsRelated items
Showing items related by title and author.
-
Bazgan, Cristina; Chlebíková, Janka; Pontoizeau, Thomas (2018) Article accepté pour publication ou publié
-
Bazgan, Cristina; Chlebíková, Janka; Pontoizeau, Thomas (2015) Communication / Conférence
-
Bazgan, Cristina; Chlebíková, Janka; Dallard, Clément (2020) Article accepté pour publication ou publié
-
Bazgan, Cristina; Pontoizeau, Thomas; Zsolt, Tuza (2017) Communication / Conférence
-
Bazgan, Cristina; Cazals, Pierre; Chlebíková, Janka (2020) Communication / Conférence