• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Equilibrium for fragmentation with immigration

Haas, Bénédicte (2005), Equilibrium for fragmentation with immigration, The Annals of Applied Probability, 15, 3, p. 1958-1996. http://dx.doi.org/10.1214/105051605000000340

Type
Article accepté pour publication ou publié
Date
2005
Journal name
The Annals of Applied Probability
Volume
15
Number
3
Publisher
Institute of Mathematical Statistics
Pages
1958-1996
Publication identifier
http://dx.doi.org/10.1214/105051605000000340
Metadata
Show full item record
Author(s)
Haas, Bénédicte
Abstract (EN)
This paper introduces stochastic processes that describe the evolution of systems of particles in which particles immigrate according to a Poisson measure and split according to a self-similar fragmentation. Criteria for existence and absence of stationary distributions are established and uniqueness is proved. Also, convergence rates to the stationary distribution are given. Linear equations which are the deterministic counterparts of fragmentation with immigration processes are next considered. As in the stochastic case, existence and uniqueness of solutions, as well as existence and uniqueness of stationary solutions, are investigated.
Subjects / Keywords
Fragmentation; Immigration; Stationary distribution; Probabilités

Related items

Showing items related by title and author.

  • Thumbnail
    The genealogy of self-similar fragmentations with negative index as a continuum random tree 
    Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
  • Thumbnail
    Fragmentation processes with an initial mass converging to infinity 
    Haas, Bénédicte (2007) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behavior of solutions to the fragmentation equation with shattering: an approach via self-similar Markov processes 
    Haas, Bénédicte (2010) Article accepté pour publication ou publié
  • Thumbnail
    Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models 
    Winkel, Matthias; Pitman, Jim; Miermont, Grégory; Haas, Bénédicte (2008-09) Article accepté pour publication ou publié
  • Thumbnail
    Loss of mass in deterministic and random fragmentations 
    Haas, Bénédicte (2003) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo