• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fractional hypocoercivity

Bouin, Emeric; Dolbeault, Jean; Lafleche, Laurent; Schmeiser, Christian (2022), Fractional hypocoercivity, Communications in Mathematical Physics, 390, p. 1369–1411. 10.1007/s00220-021-04296-4

View/Open
BDLS-Fractional-7.pdf (546.6Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Communications in Mathematical Physics
Volume
390
Publisher
Springer
Published in
Paris
Pages
1369–1411
Publication identifier
10.1007/s00220-021-04296-4
Metadata
Show full item record
Author(s)
Bouin, Emeric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Dolbeault, Jean
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lafleche, Laurent
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Schmeiser, Christian
Fakultät für Mathematik [Wien]
Abstract (EN)
This research report is devoted to kinetic equations without confinement. We investigate the large time behaviour induced by collision operators with fat tailed local equilibria. Such operators have an anomalous diffusion limit. In the appropriate scaling, the macroscopic equation involves a fractional diffusion operator so that the optimal decay rate is determined by a fractional Nash inequality. At kinetic level we develop an L 2 hypocoercivity approach and establish a rate of decay compatible with the anomalous diffusion limit.
Subjects / Keywords
Hypocoercivity; linear kinetic equations; Fokker-Planck operator; scattering operator; fractional diffusion; transport operator; Fourier mode decomposition; fractional Nash inequality; anomalous diffusion limit; algebraic decay rates

Related items

Showing items related by title and author.

  • Thumbnail
    Hypocoercivity and sub-exponential local equilibria 
    Bouin, Emeric; Dolbeault, Jean; Lafleche, Laurent; Schmeiser, Christian (2021) Article accepté pour publication ou publié
  • Thumbnail
    Hypocoercivity without confinement 
    Bouin, Emeric; Dolbeault, Jean; Mischler, Stéphane; Mouhot, Clément; Schmeiser, Christian (2020) Article accepté pour publication ou publié
  • Thumbnail
    A variational proof of Nash’s inequality 
    Bouin, Emeric; Dolbeault, Jean; Schmeiser, Christian (2020) Article accepté pour publication ou publié
  • Thumbnail
    Diffusion and kinetic transport with very weak confinement 
    Bouin, Emeric; Dolbeault, Jean; Schmeiser, Christian (2020) Article accepté pour publication ou publié
  • Thumbnail
    Hypocoercivity for linear kinetic equations conserving mass 
    Dolbeault, Jean; Mouhot, Clément; Schmeiser, Christian (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo