• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

X-Ray Sobolev Variational Auto-Encoders

Turinici, Gabriel (2019), X-Ray Sobolev Variational Auto-Encoders. https://basepub.dauphine.fr/handle/123456789/20349

View/Open
1911.13135(1).pdf (840.9Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02387084
Date
2019
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
26
Metadata
Show full item record
Author(s)
Turinici, Gabriel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
The quality of the generative models (Generative adversarial networks, Variational Auto-Encoders, ...) depends heavily on the choice of a good probability distance. However some popular metrics lack convenient properties such as (geodesic) convexity, fast evaluation and so on. To address these shortcomings, we introduce a class of distances that have built-in convexity. We investigate the relationship with some known paradigms (sliced distances, reproducing kernel Hilbert spaces, energy distances). The distances are shown to posses fast implementations and are included in an adapted Variational Auto-Encoder termed X-ray Sobolev Variational Auto-Encoder (XS-VAE) which produces good quality results on standard generative datasets.
Subjects / Keywords
machine learning; variational auto-encoder; neural network; deep learning

Related items

Showing items related by title and author.

  • Thumbnail
    Radon Sobolev Variational Auto-Encoders 
    Turinici, Gabriel (2021) Article accepté pour publication ou publié
  • Thumbnail
    Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder 
    Brugière, Pierre; Turinici, Gabriel (2022) Document de travail / Working paper
  • Thumbnail
    Sparse reconstruction from a limited projection number of the coronary artery tree in X-ray rotational imaging 
    Cohen, Laurent D.; Toumoulin, Christine; Luo, Limin; Bedossa, Marc; Peyré, Gabriel; Fehrenbach, Jérôme; Nunes, Jean-Claude; Yang, Guanyu; Oukili, Ahmed; Jung, Miyoun; Hu, Ying (2012) Communication / Conférence
  • Thumbnail
    Singular evolution on maniforlds, their smoothing properties, and Sobolev inequalities 
    Bonforte, Matteo; Grillo, Gabriele (2007) Article accepté pour publication ou publié
  • Thumbnail
    Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics 
    Nardi, Giacomo; Peyré, Gabriel; Vialard, François-Xavier (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo