
X-Ray Sobolev Variational Auto-Encoders
Turinici, Gabriel (2019), X-Ray Sobolev Variational Auto-Encoders. https://basepub.dauphine.fr/handle/123456789/20349
View/ Open
Type
Document de travail / Working paperExternal document link
https://hal.archives-ouvertes.fr/hal-02387084Date
2019Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-DauphinePublished in
Paris
Pages
26
Metadata
Show full item recordAbstract (EN)
The quality of the generative models (Generative adversarial networks, Variational Auto-Encoders, ...) depends heavily on the choice of a good probability distance. However some popular metrics lack convenient properties such as (geodesic) convexity, fast evaluation and so on. To address these shortcomings, we introduce a class of distances that have built-in convexity. We investigate the relationship with some known paradigms (sliced distances, reproducing kernel Hilbert spaces, energy distances). The distances are shown to posses fast implementations and are included in an adapted Variational Auto-Encoder termed X-ray Sobolev Variational Auto-Encoder (XS-VAE) which produces good quality results on standard generative datasets.Subjects / Keywords
machine learning; variational auto-encoder; neural network; deep learningRelated items
Showing items related by title and author.
-
Turinici, Gabriel (2021) Article accepté pour publication ou publié
-
Brugière, Pierre; Turinici, Gabriel (2022) Document de travail / Working paper
-
Cohen, Laurent D.; Toumoulin, Christine; Luo, Limin; Bedossa, Marc; Peyré, Gabriel; Fehrenbach, Jérôme; Nunes, Jean-Claude; Yang, Guanyu; Oukili, Ahmed; Jung, Miyoun; Hu, Ying (2012) Communication / Conférence
-
Bonforte, Matteo; Grillo, Gabriele (2007) Article accepté pour publication ou publié
-
Nardi, Giacomo; Peyré, Gabriel; Vialard, François-Xavier (2016) Article accepté pour publication ou publié