
On the martingale property in the rough Bergomi model
Gassiat, Paul (2019), On the martingale property in the rough Bergomi model, Electronic Communications in Probability, 24, p. 9. 10.1214/19-ECP239
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Electronic Communications in ProbabilityVolume
24Publisher
Institute of Mathematical Statistics
Pages
9
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider a class of fractional stochastic volatility models (including the so-called rough Bergomi model), where the volatility is a superlinear function of a fractional Gaussian process. We show that the stock price is a true martingale if and only if the correlation ρ between the driving Brownian motions of the stock and the volatility is nonpositive. We also show that for each ρ<0 and m>11−ρ2, the m-th moment of the stock price is infinite at each positive time.Subjects / Keywords
rough volatility; martingale propertyRelated items
Showing items related by title and author.
-
Gassiat, Paul; Labbé, Cyril (2020) Article accepté pour publication ou publié
-
Diehl, Joscha; Friz, Peter K.; Gassiat, Paul (2017) Article accepté pour publication ou publié
-
Bayer, Christian; Friz, Peter; Gassiat, Paul; Martin, Jorg; Stemper, Benjamin (2020) Article accepté pour publication ou publié
-
Friz, Peter K.; Gassiat, Paul; Pigato, Paolo (2021) Document de travail / Working paper
-
Gassiat, Paul (2021) Article accepté pour publication ou publié