• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On the properties of variational approximations of Gibbs posteriors

Alquier, Pierre; Ridgway, James; Chopin, Nicolas (2016), On the properties of variational approximations of Gibbs posteriors, Journal of Machine Learning Research, 17, 236, p. 1-41

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/pdf/1506.04091.pdf
Date
2016
Journal name
Journal of Machine Learning Research
Volume
17
Number
236
Publisher
MIT Press
Pages
1-41
Metadata
Show full item record
Author(s)
Alquier, Pierre
Centre de Recherche en Économie et Statistique [CREST]
Ridgway, James
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Chopin, Nicolas
Centre de Recherche en Économie et Statistique [CREST]
Abstract (EN)
The PAC-Bayesian approach is a powerful set of techniques to derive non-asymptotic risk bounds for random estimators. The corresponding optimal distribution of estimators, usually called the Gibbs posterior, is unfortunately often intractable. One may sample from it using Markov chain Monte Carlo, but this is usually too slow for big datasets. We consider instead variational approximations of the Gibbs posterior, which are fast to compute. We undertake a general study of the properties of such approximations. Our main finding is that such a variational approximation has often the same rate of convergence as the original PAC-Bayesian procedure it approximates. In addition, we show that, when the risk function is convex, a variational approximation can be obtained in polynomial time using a convex solver. We give finite sample oracle inequalities for the corresponding estimator. We specialize our results to several learning tasks (classification, ranking, matrix completion), discuss how to implement a variational approximation in each case, and illustrate the good properties of said approximation on real datasets.
Subjects / Keywords
Gibbs posteriors

Related items

Showing items related by title and author.

  • Thumbnail
    Avancées en statistiques computationelles Bayesiennes et approximation de mesures de Gibbs 
    Ridgway, James (2015-09) Thèse
  • Thumbnail
    Bayesian matrix completion: prior specification and consistency 
    Rousseau, Judith; Chopin, Nicolas; Cottet, Vincent; Alquier, Pierre (2014) Document de travail / Working paper
  • Thumbnail
    Markov and the Duchy of Savoy: segmenting a century with regime-switching models 
    Alerini, Julien; Olteanu, Madalina; Ridgway, James (2017) Article accepté pour publication ou publié
  • Thumbnail
    Properties of Nested Sampling 
    Robert, Christian P.; Chopin, Nicolas (2010) Article accepté pour publication ou publié
  • Thumbnail
    Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modelling 
    Robert, Christian P.; Roy, Vivekananda; Hobert, James P. (2011) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo