On the properties of variational approximations of Gibbs posteriors
Alquier, Pierre; Ridgway, James; Chopin, Nicolas (2016), On the properties of variational approximations of Gibbs posteriors, Journal of Machine Learning Research, 17, 236, p. 1-41
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/pdf/1506.04091.pdfDate
2016Journal name
Journal of Machine Learning ResearchVolume
17Number
236Publisher
MIT Press
Pages
1-41
Metadata
Show full item recordAuthor(s)
Alquier, PierreCentre de Recherche en Économie et Statistique [CREST]
Ridgway, James
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Chopin, Nicolas
Centre de Recherche en Économie et Statistique [CREST]
Abstract (EN)
The PAC-Bayesian approach is a powerful set of techniques to derive non-asymptotic risk bounds for random estimators. The corresponding optimal distribution of estimators, usually called the Gibbs posterior, is unfortunately often intractable. One may sample from it using Markov chain Monte Carlo, but this is usually too slow for big datasets. We consider instead variational approximations of the Gibbs posterior, which are fast to compute. We undertake a general study of the properties of such approximations. Our main finding is that such a variational approximation has often the same rate of convergence as the original PAC-Bayesian procedure it approximates. In addition, we show that, when the risk function is convex, a variational approximation can be obtained in polynomial time using a convex solver. We give finite sample oracle inequalities for the corresponding estimator. We specialize our results to several learning tasks (classification, ranking, matrix completion), discuss how to implement a variational approximation in each case, and illustrate the good properties of said approximation on real datasets.Subjects / Keywords
Gibbs posteriorsRelated items
Showing items related by title and author.
-
Ridgway, James (2015-09) Thèse
-
Rousseau, Judith; Chopin, Nicolas; Cottet, Vincent; Alquier, Pierre (2014) Document de travail / Working paper
-
Alerini, Julien; Olteanu, Madalina; Ridgway, James (2017) Article accepté pour publication ou publié
-
Robert, Christian P.; Chopin, Nicolas (2010) Article accepté pour publication ou publié
-
Robert, Christian P.; Roy, Vivekananda; Hobert, James P. (2011) Article accepté pour publication ou publié