hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Abi Jaber, Eduardo | |
hal.structure.identifier | Department of Mathematics - ETH | |
dc.contributor.author | Larsson, Martin | |
hal.structure.identifier | Laboratoire de Mathématiques et Modélisation d'Evry [LaMME] | |
dc.contributor.author | Pulido, Sergio | |
dc.date.accessioned | 2019-12-20T10:55:07Z | |
dc.date.available | 2019-12-20T10:55:07Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1050-5164 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20361 | |
dc.language.iso | en | en |
dc.subject | stochastic Volterra equations | en |
dc.subject | Riccati-Volterra equations | en |
dc.subject | rough volatility | en |
dc.subject | affine processes | en |
dc.subject.ddc | 519 | en |
dc.title | Affine Volterra processes | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We introduce affine Volterra processes, defined as solutions of certain stochastic convolution equations with affine coefficients. Classical affine diffusions constitute a special case, but affine Volterra processes are neither semimartingales, nor Markov processes in general. We provide explicit exponential-affine representations of the Fourier–Laplace functional in terms of the solution of an associated system of deterministic integral equations of convolution type, extending well-known formulas for classical affine diffusions. For specific state spaces, we prove existence, uniqueness, and invariance properties of solutions of the corresponding stochastic convolution equations. Our arguments avoid infinite-dimensional stochastic analysis as well as stochastic integration with respect to non-semimartingales, relying instead on tools from the theory of finite-dimensional deterministic convolution equations. Our findings generalize and clarify recent results in the literature on rough volatility models in finance. | en |
dc.relation.isversionofjnlname | The Annals of Applied Probability | |
dc.relation.isversionofjnlvol | 29 | en |
dc.relation.isversionofjnlissue | 5 | en |
dc.relation.isversionofjnldate | 2019-10 | |
dc.relation.isversionofjnlpages | 3155-3200 | en |
dc.relation.isversionofdoi | 10.1214/19-AAP1477 | en |
dc.relation.isversionofjnlpublisher | Institute of Mathematical Statistics | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2019-12-20T10:52:42Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |