
Diffusion and kinetic transport with very weak confinement
Bouin, Emeric; Dolbeault, Jean; Schmeiser, Christian (2020), Diffusion and kinetic transport with very weak confinement, Kinetic & Related Models, 13, 2, p. 345-371. 10.3934/krm.2020012
View/ Open
Type
Article accepté pour publication ou publiéDate
2020Journal name
Kinetic & Related ModelsVolume
13Number
2Publisher
AIMS - American Institute of Mathematical Sciences
Pages
345-371
Publication identifier
Metadata
Show full item recordAuthor(s)
Bouin, EmericCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Dolbeault, Jean

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Schmeiser, Christian
Fakultät für Mathematik [Wien]
Abstract (EN)
This paper is devoted to Fokker-Planck and linear kinetic equations with very weak confinement corresponding to a potential with an at most logarithmic growth and no integrable stationary state. Our goal is to understand how to measure the decay rates when the diffusion wins over the confinement although the potential diverges at infinity.Subjects / Keywords
Nash’s inequality; Caffarelli-Kohn-Nirenberg inequalities; decay rates; semigroup; weak Poincar inequality; unbounded invariant measure; rate of convergence; Fokker-Planck operator; kinetic equations; scattering operator; transport operator; hypocoercivityRelated items
Showing items related by title and author.
-
Bouin, Emeric; Dolbeault, Jean; Mischler, Stéphane; Mouhot, Clément; Schmeiser, Christian (2020) Article accepté pour publication ou publié
-
Bouin, Emeric; Dolbeault, Jean; Lafleche, Laurent; Schmeiser, Christian (2021) Article accepté pour publication ou publié
-
Dolbeault, Jean; Markowich, Peter; Oelz, Dietmar; Schmeiser, Christian (2007) Article accepté pour publication ou publié
-
Bouin, Emeric; Dolbeault, Jean; Schmeiser, Christian (2020) Article accepté pour publication ou publié
-
Bouin, Emeric; Dolbeault, Jean; Lafleche, Laurent; Schmeiser, Christian (2022) Article accepté pour publication ou publié