• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Behavior near the extinction time in self-similar fragmentations I: the stable case

Goldschmidt, Christina; Haas, Bénédicte (2010), Behavior near the extinction time in self-similar fragmentations I: the stable case, Annales de l'I.H.P. Probabilités et Statistiques, 46, 2, p. 338-368. http://dx.doi.org/10.1214/09-AIHP317

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/0805.0967
Date
2010
Journal name
Annales de l'I.H.P. Probabilités et Statistiques
Volume
46
Number
2
Publisher
Institute of Mathematical Statistics
Pages
338-368
Publication identifier
http://dx.doi.org/10.1214/09-AIHP317
Metadata
Show full item record
Author(s)
Goldschmidt, Christina
Haas, Bénédicte
Abstract (EN)
The stable fragmentation with index of self-similarity $\alpha \in [-1/2,0)$ is derived by looking at the masses of the subtrees formed by discarding the parts of a $(1 + \alpha)^{-1}$--stable continuum random tree below height $t$, for $t \geq 0$. We give a detailed limiting description of the distribution of such a fragmentation, $(F(t), t \geq 0)$, as it approaches its time of extinction, $\zeta$. In particular, we show that $t^{1/\alpha}F((\zeta - t)^+)$ converges in distribution as $t \to 0$ to a non-trivial limit. In order to prove this, we go further and describe the limiting behavior of (a) an excursion of the stable height process (conditioned to have length 1) as it approaches its maximum; (b) the collection of open intervals where the excursion is above a certain level and (c) the ranked sequence of lengths of these intervals. Our principal tool is excursion theory. We also consider the last fragment to disappear and show that, with the same time and space scalings, it has a limiting distribution given in terms of a certain size-biased version of the law of $\zeta$.
Subjects / Keywords
Probabilités

Related items

Showing items related by title and author.

  • Thumbnail
    Behavior near the extinction time in self-similar fragmentations II: Finite dislocation measures 
    Goldschmidt, Christina; Haas, Bénédicte (2014) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic behavior of solutions to the fragmentation equation with shattering: an approach via self-similar Markov processes 
    Haas, Bénédicte (2010) Article accepté pour publication ou publié
  • Thumbnail
    Regularity of formation of dust in self-similar fragmentations 
    Haas, Bénédicte (2004) Article accepté pour publication ou publié
  • Thumbnail
    The genealogy of self-similar fragmentations with negative index as a continuum random tree 
    Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
  • Thumbnail
    Quasi-stationary distributions and Yaglom limits of self-similar Markov processes 
    Rivero, Víctor Manuel; Haas, Bénédicte (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo