Behavior near the extinction time in self-similar fragmentations I: the stable case
Goldschmidt, Christina; Haas, Bénédicte (2010), Behavior near the extinction time in self-similar fragmentations I: the stable case, Annales de l'I.H.P. Probabilités et Statistiques, 46, 2, p. 338-368. http://dx.doi.org/10.1214/09-AIHP317
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/0805.0967Date
2010Journal name
Annales de l'I.H.P. Probabilités et StatistiquesVolume
46Number
2Publisher
Institute of Mathematical Statistics
Pages
338-368
Publication identifier
Metadata
Show full item recordAbstract (EN)
The stable fragmentation with index of self-similarity $\alpha \in [-1/2,0)$ is derived by looking at the masses of the subtrees formed by discarding the parts of a $(1 + \alpha)^{-1}$--stable continuum random tree below height $t$, for $t \geq 0$. We give a detailed limiting description of the distribution of such a fragmentation, $(F(t), t \geq 0)$, as it approaches its time of extinction, $\zeta$. In particular, we show that $t^{1/\alpha}F((\zeta - t)^+)$ converges in distribution as $t \to 0$ to a non-trivial limit. In order to prove this, we go further and describe the limiting behavior of (a) an excursion of the stable height process (conditioned to have length 1) as it approaches its maximum; (b) the collection of open intervals where the excursion is above a certain level and (c) the ranked sequence of lengths of these intervals. Our principal tool is excursion theory. We also consider the last fragment to disappear and show that, with the same time and space scalings, it has a limiting distribution given in terms of a certain size-biased version of the law of $\zeta$.Subjects / Keywords
ProbabilitésRelated items
Showing items related by title and author.
-
Goldschmidt, Christina; Haas, Bénédicte (2014) Article accepté pour publication ou publié
-
Haas, Bénédicte (2010) Article accepté pour publication ou publié
-
Haas, Bénédicte (2004) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
-
Rivero, Víctor Manuel; Haas, Bénédicte (2012) Article accepté pour publication ou publié