• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Infinite time blow-up in the Keller-Segel system: existence and stability

Davila, Juan; Del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2019), Infinite time blow-up in the Keller-Segel system: existence and stability. https://basepub.dauphine.fr/handle/123456789/20449

View/Open
1911.12417.pdf (233.7Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02394787
Date
2019
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Series title
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
22
Metadata
Show full item record
Author(s)
Davila, Juan
Department of Mathematical Sciences, University of Bath
Del Pino, Manuel
Department of Mathematical Sciences, University of Bath
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Musso, Monica
Department of Mathematical Sciences, University of Bath

Wei, Juncheng
University of British Columbia
Abstract (EN)
The simplest version of the parabolic-elliptic Patlak-Keller-Segel system in the two-dimensional Euclidean space has an 8π critical mass which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. Among functions with mass 8π, we find a neighborhood of a radial function such that any solution with initial condition in this neighborhood is globally defined and blows-up in infinite time with an explicit scaling involving the square root of the logarithm of the time.
Subjects / Keywords
Patlak-Keller-Segel system; chemotaxis; critical mass; blow-up; infinite time blow-up; inner-outer gluing scheme; rate; blow-up profile

Related items

Showing items related by title and author.

  • Thumbnail
    Existence and stability of infinite time blow-up in the Keller-Segel system 
    Davila, Juan; del Pino, Manuel; Dolbeault, Jean; Musso, Monica; Wei, Juncheng (2020) Document de travail / Working paper
  • Thumbnail
    The two-dimensional Keller-Segel model after blow-up 
    Schmeiser, Christian; Dolbeault, Jean (2009) Article accepté pour publication ou publié
  • Thumbnail
    Fractional Keller-Segel Equation: Global Well-posedness and Finite Time Blow-up 
    Lafleche, Laurent; Salem, Samir (2018) Document de travail / Working paper
  • Thumbnail
    A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities 
    Campos Serrano, Juan; Dolbeault, Jean (2012) Article accepté pour publication ou publié
  • Thumbnail
    Duality in Sub-Supercritical Bubbling in the Brezis-Nirenberg Problem near the Critical Exponent 
    Del Pino, Manuel; Dolbeault, Jean; Musso, Monica (2004) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo