hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Ren, Zhenjie | |
hal.structure.identifier | Centre de Mathématiques Appliquées [CMAP] | |
dc.contributor.author | Touzi, Nizar | |
hal.structure.identifier | | |
dc.contributor.author | Zhang, Jianfeng | |
dc.date.accessioned | 2020-01-28T10:36:33Z | |
dc.date.available | 2020-01-28T10:36:33Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0363-0129 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20484 | |
dc.language.iso | en | en |
dc.subject | viscosity solutions | en |
dc.subject | optimal stopping | en |
dc.subject | stochastic control | en |
dc.subject | path-dependent PDEs | en |
dc.subject.ddc | 519 | en |
dc.title | Comparison of viscosity solutions of semi-linear path-dependent PDEs | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | University of Southern California;United States | |
dc.description.abstracten | This paper provides a probabilistic proof of the comparison result for viscosity solutions of path-dependent semilinear PDEs. We consider the notion of viscosity solutions introduced in [I. Ekren, et al., Ann. Probab., 42 (2014), pp. 204--236], which considers as test functions all those smooth processes which are tangent in mean. When restricted to the Markovian case, this definition induces a larger set of test functions and reduces to the notion of stochastic viscosity solutions analyzed in [E. Bayraktar and M. Sirbu, Proc. Amer. Math. Soc., 140 (2012), pp. 3645--3654; SIAM J. Control Optim., 51 (2013), pp. 4274--4294]. Our main result takes advantage of this enlargement of the test functions and provides an easier proof of comparison. This is most remarkable in the context of the linear path-dependent heat equation. As a key ingredient for our methodology, we introduce a notion of punctual differentiation, similar to the corresponding concept in the standard viscosity solutions [L. A. Caffarelli and X. Cabre, Amer. Math. Soc. Colloq. Publ., 43, AMS, Providence, RI, 1995], and we prove that semimartingales are almost everywhere punctually differentiable. This smoothness result can be viewed as the counterpart of the Aleksandroff smoothness result for convex functions. A similar comparison result was established earlier in [I. Ekren et al., Ann. Probab., 42 (2014), pp. 204--236]. The result of this paper is more general and, more importantly, the arguments that we develop do not rely on any representation of the solution. | en |
dc.relation.isversionofjnlname | SIAM Journal on Control and Optimization | |
dc.relation.isversionofjnlvol | 58 | en |
dc.relation.isversionofjnlissue | 1 | en |
dc.relation.isversionofjnldate | 2020 | |
dc.relation.isversionofjnlpages | 277–302 | en |
dc.relation.isversionofdoi | 10.1137/19M1239404 | en |
dc.contributor.countryeditoruniversityother | UNITED STATES | |
dc.relation.isversionofjnlpublisher | SIAM - Society for Industrial and Applied Mathematics | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2020-01-28T10:33:01Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |