Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorXu, Lu
dc.date.accessioned2020-01-30T10:29:44Z
dc.date.available2020-01-30T10:29:44Z
dc.date.issued2019
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20487
dc.language.isoenen
dc.subjectHyperbolic scaling limiten
dc.subject.ddc515en
dc.titleHyperbolic scaling limit of non-equilibrium fluctuations for a weakly anharmonic chainen
dc.typeDocument de travail / Working paper
dc.description.abstractenWe consider a chain of n coupled oscillators placed on a one-dimensional lattice with periodic boundary conditions. The interaction between particles is determined by a weakly anharmonic potential Vn = r 2 /2 + σnU (r), where U has bounded second derivative and σn vanishes as n → ∞. The dynamics is perturbed by noises acting only on the positions, such that the total momentum and length are the only conserved quantities. With relative entropy technique, we prove for dynamics out of equilibrium that, if σn decays sufficiently fast, the fluctuation field of the conserved quantities converges in law to a linear p-system in the hyperbolic space-time scaling limit. The transition speed is spatially homogeneous due to the vanishing anharmonicity. We also present a quantitative bound for the speed of convergence to the corresponding hydrodynamic limit.en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages40en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02384423en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2019-11
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2020-01-23T15:25:22Z
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record