• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Interpretable Cascade Classifiers with Abstention

Clertant, Matthieu; Sokolovska, Nataliya; Chevaleyre, Yann; Hanczar, Blaise (2019), Interpretable Cascade Classifiers with Abstention, in Chaudhuri, Kamalika; Sugiyama, Masashi, 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019), Proceedings of Machine Learning Research, p. 89:2312-2320

View/Open
clertant19a.pdf (1.129Mb)
Type
Communication / Conférence
Date
2019
Conference title
22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)
Conference date
2019-04
Conference city
Naha, Okinawa
Conference country
Japan
Book title
22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019)
Book author
Chaudhuri, Kamalika; Sugiyama, Masashi
Publisher
Proceedings of Machine Learning Research
Pages
89:2312-2320
Metadata
Show full item record
Author(s)
Clertant, Matthieu

Sokolovska, Nataliya

Chevaleyre, Yann
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Hanczar, Blaise
Informatique, Biologie Intégrative et Systèmes Complexes [IBISC]
Abstract (EN)
In many prediction tasks such as medical diagnostics, sequential decisions are crucial to provide optimal individual treatment. Budget in real-life applications is always limited, and it can represent any limited resource such as time, money, or side effects of medications. In this contribution, we develop a POMDP-based framework to learn cost-sensitive heterogeneous cascading systems. We provide both the theoretical support for the introduced approach and the intuition behind it. We evaluate our novel method on some standard benchmarks, and we discuss how the learned models can be interpreted by human experts.
Subjects / Keywords
sequential decisions

Related items

Showing items related by title and author.

  • Thumbnail
    Disease Classification in Metagenomics with 2D Embeddings and Deep Learning 
    Nguyen, Thanh Hai; Prifti, Edi; Chevaleyre, Yann; Sokolovska, Nataliya; Zucker, Jean-Daniel (2018) Communication / Conférence
  • Thumbnail
    Deep Learning for Metagenomic Data: using 2D Embeddings and Convolutional Neural Networks 
    Thanh Hai, Nguyen; Chevaleyre, Yann; Prifti, Edi; Sokolovska, Nataliya; Zucker, Jean-Daniel (2017) Communication / Conférence
  • Thumbnail
    Learning Interpretable Models using Soft Integrity Constraints 
    Belahcene, Khaled; Sokolovska, Nataliya; Chevaleyre, Yann; Zucker, Jean-Daniel (2020) Communication / Conférence
  • Thumbnail
    A Provable Algorithm for Learning Interpretable Scoring Systems 
    Sokolovska, Nataliya; Chevaleyre, Yann; Zucker, Jean-Daniel (2018) Communication / Conférence
  • Thumbnail
    Interpretable and accurate prediction models for metagenomics data 
    Prifti, Edi; Chevaleyre, Yann; Hanczar, Blaise; Belda, Eugeni; Danchin, Antoine; Clément, Karine (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo