• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

φ-FEM, a finite element method on domains defined by level-sets: the Neumann boundary case

Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei (2020), φ-FEM, a finite element method on domains defined by level-sets: the Neumann boundary case. https://basepub.dauphine.fr/handle/123456789/20597

View/Open
duprez.pdf (644.9Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02521042
Date
2020
Publisher
Cahier de recherche CEREMADE, Université Paris-Dauphine
Published in
Paris
Pages
24
Metadata
Show full item record
Author(s)
Duprez, Michel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Lleras, Vanessa
Institut Montpelliérain Alexander Grothendieck [IMAG]
Lozinski, Alexei
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Abstract (EN)
We extend a fictitious domain-type finite element method, called φ-FEM and introduced in [7], to the case of Neumann boundary conditions. The method is based on a multiplication by the level-set function and does not require a boundary fitted mesh. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our approach does not need any non-standard numerical integration on cut mesh elements or on the actual boundary. We prove the optimal convergence of φ-FEM and the fact that the discrete problem is well conditioned inependently of the mesh cuts. The numerical experiments confirm the theoretical results.
Subjects / Keywords
Finite element method; fictitious domain; level-set; Neumann conditions

Related items

Showing items related by title and author.

  • Thumbnail
    φ-FEM: a finite element method on domains defined by level-sets 
    Duprez, Michel; Lozinski, Alexei (2020) Article accepté pour publication ou publié
  • Thumbnail
    A new ϕ -FEM approach for problems with natural boundary conditions 
    Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei (2020) Document de travail / Working paper
  • Thumbnail
    How to Apply a Filter Defined in the Frequency Domain by a Continuous Function 
    Briand, Thibaud; Vacher, Jonathan (2016) Article accepté pour publication ou publié
  • Thumbnail
    Optimal immunity control by social distancing for the SIR epidemic model 
    Bliman, Pierre-Alexandre; Duprez, Michel; Privat, Yannick; Vauchelet, Nicolas (2020-06) Document de travail / Working paper
  • Thumbnail
    Positive and negative results on the internal controllability of parabolic equations coupled by zero and first order terms 
    Duprez, Michel; Lissy, Pierre (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo