• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A variational proof of Nash’s inequality

Bouin, Emeric; Dolbeault, Jean; Schmeiser, Christian (2020), A variational proof of Nash’s inequality, Atti della Accademia Nazionale dei Lincei. Classe di scienze fisiche, matematiche e naturali, Matematica e applicazioni, 31, 1, p. 211-223. 10.4171/RLM/886

View/Open
155108480955327.pdf (237.3Kb)
Type
Article accepté pour publication ou publié
Date
2020
Journal name
Atti della Accademia Nazionale dei Lincei. Classe di scienze fisiche, matematiche e naturali, Matematica e applicazioni
Volume
31
Number
1
Publisher
Springer
Pages
211-223
Publication identifier
10.4171/RLM/886
Metadata
Show full item record
Author(s)
Bouin, Emeric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Schmeiser, Christian
Fakultät für Mathematik [Wien]
Abstract (EN)
This paper is intended to give a characterization of the optimality case in Nash's inequality, based on methods of nonlinear analysis for elliptic equations and techniques of the calculus of variations. By embedding the problem into a family of Gagliardo-Nirenberg inequalities, this approach reveals why optimal functions have compact support and also why optimal constants are determined by a simple spectral problem.
Subjects / Keywords
compact support; compactness; semi-linear elliptic equations; Nash inequality; interpolation; radial symmetry; Neumann homogeneous boundary conditions; Laplacian

Related items

Showing items related by title and author.

  • Thumbnail
    Hypocoercivity without confinement 
    Bouin, Emeric; Dolbeault, Jean; Mischler, Stéphane; Mouhot, Clément; Schmeiser, Christian (2020) Article accepté pour publication ou publié
  • Thumbnail
    Diffusion and kinetic transport with very weak confinement 
    Bouin, Emeric; Dolbeault, Jean; Schmeiser, Christian (2020) Article accepté pour publication ou publié
  • Thumbnail
    Hypocoercivity and sub-exponential local equilibria 
    Bouin, Emeric; Dolbeault, Jean; Lafleche, Laurent; Schmeiser, Christian (2021) Article accepté pour publication ou publié
  • Thumbnail
    Fractional hypocoercivity 
    Bouin, Emeric; Dolbeault, Jean; Lafleche, Laurent; Schmeiser, Christian (2022) Article accepté pour publication ou publié
  • Thumbnail
    On Maxwellian equilibria of insulated semiconductors 
    Cafarelli, Luis; Dolbeault, Jean; Markowich, Peter; Schmeiser, Christian (2000) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo