
New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension
Burtea, Cosmin; Haspot, Boris (2020), New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension, Nonlinearity, 33, 5. 10.1088/1361-6544/ab7102
Type
Article accepté pour publication ou publiéDate
2020Journal name
NonlinearityVolume
33Number
5Publisher
IOP Science
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we prove the existence of global strong solution for the Navier-Stokes equations with general degenerate viscosity coefficients. The cornerstone of the proof is the introduction of a new effective pressure which allows to obtain an Oleinik-type estimate for the so called effective velocity. In our proof we make use of additional regularizing effects on the velocity which requires to extend the technics developed by Hoff for the constant viscosity case.Subjects / Keywords
PDe; Équation aux dérivées partielles; Navier-Stokes equationsRelated items
Showing items related by title and author.
-
Haspot, Boris (2018) Article accepté pour publication ou publié
-
Haspot, Boris (2017) Article accepté pour publication ou publié
-
Burtea, Cosmin; Haspot, Boris (2022) Article accepté pour publication ou publié
-
Haspot, Boris (2018) Document de travail / Working paper
-
Burtea, Cosmin; Haspot, Boris (2022) Article accepté pour publication ou publié