• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Fujita Kato solution for compressible Navier-Stokes equation with axisymmetric initial data and zero Mach number limit

Haspot, Boris (2019), Fujita Kato solution for compressible Navier-Stokes equation with axisymmetric initial data and zero Mach number limit, Communications in Contemporary Mathematics. 10.1142/S021919971950041X

View/Open
haspot.pdf (397.8Kb)
Type
Article accepté pour publication ou publié
Date
2019
Journal name
Communications in Contemporary Mathematics
Publication identifier
10.1142/S021919971950041X
Metadata
Show full item record
Author(s)
Haspot, Boris
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this paper we investigate the question of the existence of global strong solution for the compressible Navier Stokes equations for small initial data such that the rotational part of the velocity Pu 0 belongs to ˙ H N 2 −1. We show then an equivalence of the so called Fujita Kato theorem to the case of the compressible Navier-Stokes equation when we consider axisymmetric initial data in dimension N = 2, 3. The main difficulty is relied to the fact that in this case the velocity is not Lipschitz, in consequence we have to study carefully the coupling between the rotational and irrotational part of the velocity. In a second part, following the arguments developed in [13] we adress the question of convergence to the incompressible model (for ill-prepared initial data) when the Mach number goes to zero.
Subjects / Keywords
Compressible Navier–Stokes equation; saxisymmetric initial data; existence of global strong solution; Mach number limit; ill prepared initial data

Related items

Showing items related by title and author.

  • Thumbnail
    Global bmo −1 (R N ) radially symmetric solution for compressible Navier-Stokes equations with initial density in L ∞ (R N ) 
    Haspot, Boris (2019) Document de travail / Working paper
  • Thumbnail
    New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension 
    Burtea, Cosmin; Haspot, Boris (2020) Article accepté pour publication ou publié
  • Thumbnail
    Porous media equations, fast diffusion equations and the existence of global weak solution for the quasi-solution of compressible Navier-Stokes equations 
    Haspot, Boris (2014) Communication / Conférence
  • Thumbnail
    From the Highly Compressible Navier–Stokes Equations to Fast Diffusion and Porous Media Equations. Existence of Global Weak Solution for the Quasi-Solutions 
    Haspot, Boris (2016) Article accepté pour publication ou publié
  • Thumbnail
    Existence of global strong solutions for the barotropic Navier–Stokes system with large initial data on the rotational part of the velocity 
    Haspot, Boris (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo