
Unique continuation for many-body Schrodinger operators and the Hohenberg-Kohn theorem
Garrigue, Louis (2018), Unique continuation for many-body Schrodinger operators and the Hohenberg-Kohn theorem, 2199-1413, 21, 3. 10.1007/s11040-018-9287-z
View/ Open
Type
Article accepté pour publication ou publiéDate
2018Journal name
2199-1413Volume
21Number
3Publisher
Springer
Publication identifier
Metadata
Show full item recordAuthor(s)
Garrigue, LouisAbstract (EN)
We prove the strong unique continuation property for many-body Schrodinger operators with an external potential and an interaction potential both in Lploc(Rd), where p > max(2d/3, 2), independently of the number of particles. With the same assumptions, we obtain the Hohenberg-Kohn theorem, which is one of the most fundamental results in Density Functional Theory.Subjects / Keywords
Mathematical physics; Analysis of PDERelated items
Showing items related by title and author.
-
Garrigue, Louis (2020) Article accepté pour publication ou publié
-
Garrigue, Louis (2019) Article accepté pour publication ou publié
-
Meng, Long (2019-05) Document de travail / Working paper
-
A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems Abanin, Dmitry A.; De Roeck, Wojciech; Ho, Wen Wei; Huveneers, François (2017) Article accepté pour publication ou publié
-
Lampart, Jonas; Lewin, Mathieu (2015) Article accepté pour publication ou publié