
Reducibility of ultra-differentiable quasi-periodic cocycles under an adapted arithmetic condition
Bounemoura, Abed; Chavaudret, Claire; Liang, Shuqing (2021), Reducibility of ultra-differentiable quasi-periodic cocycles under an adapted arithmetic condition, Proceedings of the American Mathematical Society, 151, 4, p. 2999-3012
View/ Open
Type
Article accepté pour publication ou publiéDate
2021Journal name
Proceedings of the American Mathematical SocietyVolume
151Number
4Publisher
American Mathematical Society
Published in
Paris
Pages
2999-3012
Metadata
Show full item recordAuthor(s)
Bounemoura, AbedCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Chavaudret, Claire
Laboratoire Jean Alexandre Dieudonné [LJAD]
Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)]
Liang, Shuqing
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We prove a reducibility result for sl(2,R) quasi-periodic cocycles close to a constant elliptic matrix in ultra-differentiable classes, under an adapted arithmetic condition which extends the Brjuno-Rüssmann condition in the analytic case. The proof is based on an elementary property of the fibered rotation number and deals with ultra- differentiable functions with a weighted Fourier norm. We also show that a weaker arithmetic condition is necessary for reducibility, and that it can be compared to a sufficient arithmetic condition.Subjects / Keywords
quasi-periodic; cocycles; Lyapunov exponent; rotation number; reducibilityRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Fayad, Bassam; Niederman, Laurent (2017) Article accepté pour publication ou publié
-
Bounemoura, Abed; Farré, Gerard (2021) Document de travail / Working paper
-
Bounemoura, Abed; Féjoz, Jacques (2021) Ouvrage
-
Bounemoura, Abed (2020) Article accepté pour publication ou publié
-
Bounemoura, Abed (2019) Article accepté pour publication ou publié