Show simple item record

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorBorrelli, William
hal.structure.identifierDipartimento di Matematica e Applicazioni “Renato Caccioppoli”
dc.contributor.authorCarlone, Raffaele
hal.structure.identifierDipartimento di Matematica "Guido Castelnuovo" [Roma I] [Sapienza University of Rome]
dc.contributor.authorTentarelli, Lorenzo
dc.date.accessioned2020-05-06T13:51:03Z
dc.date.available2020-05-06T13:51:03Z
dc.date.issued2019
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20705
dc.language.isoenen
dc.subjectnonlinear Dirac equationen
dc.subjectmetric graphsen
dc.subjectlocal well-posednessen
dc.subjectbound statesen
dc.subjectimplicit function theoremen
dc.subjectbifurcationen
dc.subjectperturbation methoden
dc.subjectnonrelativistic limiten
dc.subject.ddc515en
dc.titleOn the nonlinear Dirac equation on noncompact metric graphsen
dc.typeDocument de travail / Working paper
dc.description.abstractenThe paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., ψp−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.en
dc.publisher.nameCahier de recherche CEREMADE, Université Paris-Dauphineen
dc.publisher.cityParisen
dc.identifier.citationpages29en
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-02426035en
dc.subject.ddclabelAnalyseen
dc.identifier.citationdate2019-12
dc.description.ssrncandidatenonen
dc.description.halcandidateouien
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.date.updated2020-05-06T13:43:11Z
hal.faultCodeInternal server error: Test collection CEREMADE-DAUPHINE not found
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record