Nested Monte Carlo Expression Discovery vs Genetic Programming for Forecasting Financial Volatility
Ben Hamida, Sana; Cazenave, Tristan (2020), Nested Monte Carlo Expression Discovery vs Genetic Programming for Forecasting Financial Volatility. https://basepub.dauphine.fr/handle/123456789/20718
Type
Document de travail / Working paperDate
2020Publisher
Preprint Lamsade
Series title
Preprint LamsadePublished in
Paris
Metadata
Show full item recordAuthor(s)
Ben Hamida, Sana
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Cazenave, Tristan
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We are interested in discovering expressions for financial prediction using Nested Monte Carlo Search and Genetic Programming. Both methods are applied to learning from financial time series to generate nonlinear functions for market volatility prediction. The input data, that is a series of daily prices of European S&P500 index, is filtered and sampled in order to improve the training process. Using some assessment metrics, the best generated models given by both approaches for each training sub-sample, are evaluated and compared. Results show that Nested Monte Carlo is able to generate better forecasting models than Genetic Programming for the majority of learning samples.Subjects / Keywords
Genetic ProgrammingRelated items
Showing items related by title and author.
-
Cazenave, Tristan; Ben Hamida, Sana (2015) Communication / Conférence
-
Cazenave, Tristan (2010) Communication / Conférence
-
Cazenave, Tristan (2013) Article accepté pour publication ou publié
-
Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2019) Communication / Conférence
-
Hmida, Hmida; Ben Hamida, Sana; Borgi, Amel; Rukoz, Marta (2018) Article accepté pour publication ou publié