Nested Monte Carlo Expression Discovery vs Genetic Programming for Forecasting Financial Volatility
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Ben Hamida, Sana
HAL ID: 177299 ORCID: 0000-0003-4202-613X | |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Cazenave, Tristan
HAL ID: 743184 | |
dc.date.accessioned | 2020-05-12T11:37:40Z | |
dc.date.available | 2020-05-12T11:37:40Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20718 | |
dc.language.iso | en | en |
dc.subject | Genetic Programming | en |
dc.subject.ddc | 005 | en |
dc.title | Nested Monte Carlo Expression Discovery vs Genetic Programming for Forecasting Financial Volatility | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We are interested in discovering expressions for financial prediction using Nested Monte Carlo Search and Genetic Programming. Both methods are applied to learning from financial time series to generate nonlinear functions for market volatility prediction. The input data, that is a series of daily prices of European S&P500 index, is filtered and sampled in order to improve the training process. Using some assessment metrics, the best generated models given by both approaches for each training sub-sample, are evaluated and compared. Results show that Nested Monte Carlo is able to generate better forecasting models than Genetic Programming for the majority of learning samples. | en |
dc.publisher.name | Preprint Lamsade | en |
dc.publisher.city | Paris | en |
dc.relation.ispartofseriestitle | Preprint Lamsade | en |
dc.subject.ddclabel | Programmation, logiciels, organisation des données | en |
dc.identifier.citationdate | 2020 | |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2020-05-12T11:34:57Z | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |