Show simple item record

dc.contributor.authorBazgan, Cristina
dc.contributor.authorMonnot, Jérôme
HAL ID: 178759
ORCID: 0000-0002-7452-6553
dc.contributor.authorPaschos, Vangelis
dc.contributor.authorSerrière, F.
dc.date.accessioned2020-05-15T13:12:28Z
dc.date.available2020-05-15T13:12:28Z
dc.date.issued2005
dc.identifier.issn0304-3975
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20746
dc.language.isoenen
dc.subjectSet Cover
dc.subjectdifferential ratio
dc.subjectapproximation algorithms
dc.subject.ddc005en
dc.titleDifferential approximations for min set cover
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe present in this paper differential approximation results for min set cover and min weighted set cover . We first show that the differential approximation ratio of the natural greedy algorithm for min set cover is bounded below by~1.365/Δ and above by 4/(Δ+1), where~Δ is the maximum set-cardinality in the min set cover-instance. Next we study another approximation algorithm for min set cover that computes 2-optimal solutions, i.e., solutions that cannot be improved by removing two sets belonging to them and adding another set not belonging to them. We prove that the differential approximation ratio of this second algorithm is bounded below by 2/(Δ+1) and that this bound is tight. Finally, we study an approximation algorithm for min weighted set cover and provide a tight lower bound of~1/Δ. Our results identically hold for max hypergraph independent set in both the standard and the differential approximation paradigms.
dc.relation.isversionofjnlnameTheoretical Computer Science
dc.relation.isversionofjnlvol332
dc.relation.isversionofjnldate2005
dc.identifier.urlsitehttps://hal.archives-ouvertes.fr/hal-00007799
dc.relation.isversionofjnlpublisherElsevier
dc.subject.ddclabelProgrammation, logiciels, organisation des donnéesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2020-09-25T10:21:50Z


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record