• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Parameterized algorithms for min-max multiway cut and list digraph homomorphism

Kim, Eun Jung; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2017), Parameterized algorithms for min-max multiway cut and list digraph homomorphism, Journal of Computer and System Sciences, 86, p. 191-206. 10.1016/j.jcss.2017.01.003

Type
Article accepté pour publication ou publié
External document link
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01487567
Date
2017
Journal name
Journal of Computer and System Sciences
Volume
86
Publisher
Elsevier
Pages
191-206
Publication identifier
10.1016/j.jcss.2017.01.003
Metadata
Show full item record
Author(s)
Kim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paul, Christophe

Sau Valls, Ignasi cc

Thilikos, Dimitrios M. cc
Abstract (EN)
In this paper we design FPT-algorithms for two parameterized problems. The first is List Digraph Homomorphism: given two digraphs G and H and a list of allowed vertices of H for every vertex of G, the question is whether there exists a homomorphism from G to H respecting the list constraints. The second problem is a variant of Multiway Cut, namely Min-Max Multiway Cut: given a graph G, a non-negative integer `, and a set T of r terminals, the question is whether we can partition the vertices of G into r parts such that (a) each part contains one terminal and (b) there are at most ` edges with only one endpoint in this part. Weparameterize List Digraph Homomorphism by the number w of edges of G that are mapped to non-loop edges of H and we give a time 2O(`·log h+`2·log `)· n4 log n algorithm, where h is the order of the host graph H. We also prove that Min-Max Multiway Cut can be solved in time 2O((`r)2log `r)· n4· log n. Our approach introduces a general problem, called List Allocation, whose expressive power permits the design of parameterized reductions of both aforementioned problems to it. Then our results are based on an FPT-algorithm for the List Allocation problem that is designed using a suitable adaptation of the randomized contractions technique.
Subjects / Keywords
Parameterized complexity; Fixed-Parameter Tractable algorithm; Multiway Cut; Digraph homomorphism

Related items

Showing items related by title and author.

  • Thumbnail
    An FPT 2-Approximation for Tree-Cut Decomposition 
    Kim, Eun Jung; Oum, Sang-il; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2018) Article accepté pour publication ou publié
  • Thumbnail
    An FPT 2-Approximation for Tree-cut Decomposition 
    Kim, Eun Jung; Oum, Sang-Il; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2015) Communication / Conférence
  • Thumbnail
    A polynomial-time algorithm for Outerplanar Diameter Improvement 
    Cohen, Nathann; Gonçalves, Daniel; Kim, Eun Jung; Paul, Christophe; Sau Valls, Ignasi; Thilikos, Dimitrios M. (2017) Article accepté pour publication ou publié
  • Thumbnail
    Linear Kernels and Single-Exponential Algorithms Via Protrusion Decompositions 
    Kim, Eun Jung; Langer, Alexander; Paul, Christophe; Reidl, Felix; Rossmanith, Peter; Sau Valls, Ignasi (2016) Article accepté pour publication ou publié
  • Thumbnail
    Linear Kernels and Single-Exponential Algorithms via Protrusion Decompositions 
    Kim, Eun Jung; Langer, Alexander; Paul, Christophe; Reidl, Felix; Rossmanith, Peter; Sau Valls, Ignasi; Sikdar, Somnath (2013-07) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo