Parameterized algorithms for min-max multiway cut and list digraph homomorphism
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Kim, Eun Jung | |
hal.structure.identifier | ||
dc.contributor.author | Paul, Christophe
HAL ID: 4726 | |
hal.structure.identifier | ||
dc.contributor.author | Sau Valls, Ignasi
HAL ID: 7331 ORCID: 0000-0002-8981-9287 | |
hal.structure.identifier | ||
dc.contributor.author | Thilikos, Dimitrios M.
HAL ID: 178742 ORCID: 0000-0003-0470-1800 | |
dc.date.accessioned | 2020-05-27T12:53:25Z | |
dc.date.available | 2020-05-27T12:53:25Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0022-0000 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20785 | |
dc.language.iso | en | en |
dc.subject | Parameterized complexity | en |
dc.subject | Fixed-Parameter Tractable algorithm | en |
dc.subject | Multiway Cut | en |
dc.subject | Digraph homomorphism | en |
dc.subject.ddc | 511 | en |
dc.title | Parameterized algorithms for min-max multiway cut and list digraph homomorphism | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper we design FPT-algorithms for two parameterized problems. The first is List Digraph Homomorphism: given two digraphs G and H and a list of allowed vertices of H for every vertex of G, the question is whether there exists a homomorphism from G to H respecting the list constraints. The second problem is a variant of Multiway Cut, namely Min-Max Multiway Cut: given a graph G, a non-negative integer `, and a set T of r terminals, the question is whether we can partition the vertices of G into r parts such that (a) each part contains one terminal and (b) there are at most ` edges with only one endpoint in this part. Weparameterize List Digraph Homomorphism by the number w of edges of G that are mapped to non-loop edges of H and we give a time 2O(`·log h+`2·log `)· n4 log n algorithm, where h is the order of the host graph H. We also prove that Min-Max Multiway Cut can be solved in time 2O((`r)2log `r)· n4· log n. Our approach introduces a general problem, called List Allocation, whose expressive power permits the design of parameterized reductions of both aforementioned problems to it. Then our results are based on an FPT-algorithm for the List Allocation problem that is designed using a suitable adaptation of the randomized contractions technique. | en |
dc.relation.isversionofjnlname | Journal of Computer and System Sciences | |
dc.relation.isversionofjnlvol | 86 | en |
dc.relation.isversionofjnldate | 2017 | |
dc.relation.isversionofjnlpages | 191-206 | en |
dc.relation.isversionofdoi | 10.1016/j.jcss.2017.01.003 | en |
dc.identifier.urlsite | https://hal-lirmm.ccsd.cnrs.fr/lirmm-01487567 | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Principes généraux des mathématiques | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.relation.Isversionofjnlpeerreviewed | oui | en |
dc.date.updated | 2020-05-27T12:46:47Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |