An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion
Kanté, Mamadou Moustapha; Kim, Eun Jung; Kwon, O-joung; Paul, Christophe (2017), An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion, Algorithmica, 79, 1, p. 66–95. 10.1007/s00453-016-0230-z
Type
Article accepté pour publication ou publiéExternal document link
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01692676Date
2017Journal name
AlgorithmicaVolume
79Number
1Publisher
Springer
Pages
66–95
Publication identifier
Metadata
Show full item recordAuthor(s)
Kanté, Mamadou Moustapha
Kim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Kwon, O-joung
Paul, Christophe
Abstract (EN)
Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour (J Comb Theory Ser B 96(4):514–528, 2006). Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the LINEAR RANKWIDTH-1 VERTEX DELETION problem (shortly, LRW1-VERTEX DELETION). In the LRW1-VERTEX DELETION problem, given an n-vertex graph G and a positive integer k, we want to decide whether there is a set of at most k vertices whose removal turns G into a graph of linear rankwidth at most 1 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-VERTEX DELETION can be solved in time f(k)⋅n3 for some function f, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-VERTEX DELETION can be solved in time 8k⋅nO(1). The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time 2O(k)⋅n4. We also prove that the running time cannot be improved to 2o(k)⋅nO(1) under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-VERTEX DELETION problem admits a polynomial kernel.Subjects / Keywords
Necklace graph; Thread graph; Cliquewidth; Rankwidth; Linear rankwidthRelated items
Showing items related by title and author.
-
Paul, Christophe; Kim, Eun Jung; Kanté, Mamadou Moustapha; Kwon, O-joung (2015) Communication / Conférence
-
Kanté, Mamadou Moustapha; Kim, Eun Jung; Kwon, O-joung; Oum, Sang-Il (2023) Article accepté pour publication ou publié
-
Kim, Eun Jung; Kwon, O-joung (2018) Communication / Conférence
-
Kim, Eun Jung; Kwon, O-Joung (2020) Article accepté pour publication ou publié
-
Kim, Eun Jung; Langer, Alexander; Paul, Christophe; Reidl, Felix; Rossmanith, Peter; Sau Valls, Ignasi (2016) Article accepté pour publication ou publié