Show simple item record

hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorKim, Eun Jung
hal.structure.identifier
dc.contributor.authorLanger, Alexander
hal.structure.identifier
dc.contributor.authorPaul, Christophe
HAL ID: 4726
hal.structure.identifier
dc.contributor.authorReidl, Felix
hal.structure.identifier
dc.contributor.authorRossmanith, Peter
hal.structure.identifier
dc.contributor.authorSau Valls, Ignasi
HAL ID: 7331
ORCID: 0000-0002-8981-9287
dc.date.accessioned2020-05-27T13:38:26Z
dc.date.available2020-05-27T13:38:26Z
dc.date.issued2016
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/20789
dc.language.isoenen
dc.subjectTheory of computationen
dc.subjectDesign and analysis of algorithmsen
dc.subjectParameterized complexity and exact algorithmsen
dc.subjectFixed parameter tractabilityen
dc.subject.ddc511en
dc.titleLinear Kernels and Single-Exponential Algorithms Via Protrusion Decompositionsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe present a linear-time algorithm to compute a decomposition scheme for graphs G that have a set X⊆V(G), called a treewidth-modulator, such that the treewidth of G − X is bounded by a constant. Our decomposition, called a protrusion decomposition, is the cornerstone in obtaining the following two main results. Our first result is that any parameterized graph problem (with parameter k) that has a finite integer index and such that Yes-instances have a treewidth-modulator of size O(k) admits a linear kernel on the class of H-topological-minor-free graphs, for any fixed graph H. This result partially extends previous meta-theorems on the existence of linear kernels on graphs of bounded genus and H-minor-free graphs. Let F be a fixed finite family of graphs containing at least one planar graph. Given an n-vertex graph G and a non-negative integer k, Planar-F-Deletion asks whether G has a set X⊆V(G) such that |X| ⩽ k and G − X is H-minor-free for every H ϵ F. As our second application, we present the first single-exponential algorithm to solve Planar-F-Deletion. Namely, our algorithm runs in time 2O(k) · n2, which is asymptotically optimal with respect to k. So far, single-exponential algorithms were only known for special cases of the family F.en
dc.relation.isversionofjnlnameACM Transactions on Algorithms
dc.relation.isversionofjnlvol12en
dc.relation.isversionofjnlissue2en
dc.relation.isversionofjnldate2016
dc.relation.isversionofdoi10.1145/2797140en
dc.identifier.urlsitehttps://hal-lirmm.ccsd.cnrs.fr/lirmm-01288472en
dc.subject.ddclabelPrincipes généraux des mathématiquesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewednonen
dc.relation.Isversionofjnlpeerreviewednonen
dc.date.updated2020-05-27T13:34:32Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record