• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Local Linear Convergence of Douglas-Rachford/ADMM for Low Complexity Regularization

Liang, Jingwei; Fadili, Jalal M.; Peyré, Gabriel; Luke, Russell (2015), Local Linear Convergence of Douglas-Rachford/ADMM for Low Complexity Regularization, SPARS, 2015, Cambridge, UNITED KINGDOM

View/Open
sparsdrrate.pdf (289.4Kb)
Type
Communication / Conférence
Date
2015
Conference title
SPARS
Conference date
2015
Conference city
Cambridge
Conference country
UNITED KINGDOM
Metadata
Show full item record
Author(s)
Liang, Jingwei
Groupe de Recherche en Informatique, Image et Instrumentation de Caen [GREYC]
Fadili, Jalal M.
Groupe de Recherche en Informatique, Image et Instrumentation de Caen [GREYC]
Peyré, Gabriel
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Luke, Russell
Mathematics Department [Gottingen] [NAM]
Abstract (EN)
The Douglas-Rachford (DR) and ADMM algorithms have become popular to solve sparse recovery problems and beyond. The goal of this work is to understand the local convergence behaviour of DR/ADMM which have been observed in practice to exhibit local linear convergence. We show that when the involved functions (resp. their Legendre-Fenchel conjugates) are partly smooth, the DR (resp. ADMM) method identifies their associated active manifolds in finite time. Moreover, when these functions are partly polyhedral, we prove that DR (resp. ADMM) is locally linearly convergent with a rate in terms of the cosine of the Friedrichs angle between the tangent spaces of the two active manifolds. This is illustrated by several concrete examples and supported by numerical experiments.
Subjects / Keywords
Douglas-Rachford; ADMM

Related items

Showing items related by title and author.

  • Thumbnail
    Activity Identification and Local Linear Convergence of Douglas–Rachford / ADMM under Partial Smoothness 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel; Luke, Russell (2015) Communication / Conférence
  • Thumbnail
    Local Linear Convergence of Inertial Forward-Backward Splitting for Low Complexity Regularization 
    Liang, Jingwei; Fadili, Jalal M.; Peyré, Gabriel (2015) Communication / Conférence
  • Thumbnail
    Local Convergence Properties of Douglas–Rachford and Alternating Direction Method of Multipliers 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2017) Article accepté pour publication ou publié
  • Thumbnail
    Local Linear Convergence Analysis of Primal-Dual Splitting Methods 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2018) Article accepté pour publication ou publié
  • Thumbnail
    Local Linear Convergence of Forward–Backward under Partial Smoothness 
    Liang, Jingwei; Fadili, Jalal; Peyré, Gabriel (2014) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo