• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Capacity Constrained Entropic Optimal Transport, Sinkhorn Saturated Domain Out-Summation and Vanishing Temperature

Benamou, Jean-David; Martinet, Mélanie (2020-05), Capacity Constrained Entropic Optimal Transport, Sinkhorn Saturated Domain Out-Summation and Vanishing Temperature. https://basepub.dauphine.fr/handle/123456789/20879

View/Open
OTEL.pdf (6.433Mb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02563022
Date
2020-05
Publisher
Cahier de recherche CEREMADE
Published in
Paris
Pages
49
Metadata
Show full item record
Author(s)
Benamou, Jean-David
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Martinet, Mélanie
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We propose a new method to reduce the computational cost of the Entropic Optimal Transport in the vanishing temperature (ε) limit. As in [Schmitzer, 2016], the method relies on a Sinkhorn continuation "ε-scaling" approach; but instead of truncating out the small values of the Kernel, we rely on the exact "out-summation" of saturated domains for a modified constrained Entropic Optimal problem. The constraint depends on an additional parameter λ. In pratice λ = ε also vanishes and the constraint disappear. Using [Berman, 2017], the convergence of the (ε, λ) continuation method based on this modified problem is established. We then show that the saturated domain can be over estimated from the previous larger (ε, λ). On the saturated zone the solution is constant and known and the domain can be "out-summed" (removed) from Sinkhorn algorithm. The computational and cost and memory foot print is shown to be almost linear thanks again to an estimate given by [Berman, 2017]. This is confirmed on 1-D numerical experiments.
Subjects / Keywords
Entropic regularization; Sinkhorn Algorithm; Optimal transport; Convex optimization

Related items

Showing items related by title and author.

  • Thumbnail
    An Entropic Optimal Transport Numerical Approach to the Reflector Problem 
    Benamou, Jean-David; Ijzerman, Wilbert; Rukhaia, Giorgi (2020) Article accepté pour publication ou publié
  • Thumbnail
    Entropic Optimal Transport Solutions of the Semigeostrophic Equations 
    Benamou, Jean-David; Cotter, Colin; Malamut, Hugo (2023) Document de travail / Working paper
  • Thumbnail
    Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm 
    Benamou, Jean-David; Carlier, Guillaume; Nenna, Luca (2019) Article accepté pour publication ou publié
  • Thumbnail
    Second order models for optimal transport and cubic splines on the Wasserstein space 
    Benamou, Jean-David; Gallouët, Thomas; Vialard, François-Xavier (2019) Article accepté pour publication ou publié
  • Thumbnail
    Optimal transportation, modelling and numerical simulation 
    Benamou, Jean-David (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo