hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Benamou, Jean-David | * |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Martinet, Mélanie | * |
dc.date.accessioned | 2020-06-12T09:15:18Z | |
dc.date.available | 2020-06-12T09:15:18Z | |
dc.date.issued | 2020-05 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/20879 | |
dc.language.iso | en | en |
dc.subject | Entropic regularization | en |
dc.subject | Sinkhorn Algorithm | en |
dc.subject | Optimal transport | en |
dc.subject | Convex optimization | en |
dc.subject.ddc | 515 | en |
dc.title | Capacity Constrained Entropic Optimal Transport, Sinkhorn Saturated Domain Out-Summation and Vanishing Temperature | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We propose a new method to reduce the computational cost of the Entropic Optimal Transport in the vanishing temperature (ε) limit. As in [Schmitzer, 2016], the method relies on a Sinkhorn continuation "ε-scaling" approach; but instead of truncating out the small values of the Kernel, we rely on the exact "out-summation" of saturated domains for a modified constrained Entropic Optimal problem. The constraint depends on an additional parameter λ. In pratice λ = ε also vanishes and the constraint disappear. Using [Berman, 2017], the convergence of the (ε, λ) continuation method based on this modified problem is established. We then show that the saturated domain can be over estimated from the previous larger (ε, λ). On the saturated zone the solution is constant and known and the domain can be "out-summed" (removed) from Sinkhorn algorithm. The computational and cost and memory foot print is shown to be almost linear thanks again to an estimate given by [Berman, 2017]. This is confirmed on 1-D numerical experiments. | en |
dc.publisher.name | Cahier de recherche CEREMADE | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 49 | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-02563022 | en |
dc.subject.ddclabel | Analyse | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2020-06-12T09:08:09Z | |
hal.author.function | aut | |
hal.author.function | aut | |