• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Optimal adaptive estimation of linear functionals under sparsity

Collier, Olivier; Comminges, Laëtitia; Tsybakov, Alexandre; Verzelen, Nicolas (2018), Optimal adaptive estimation of linear functionals under sparsity, Annals of Statistics, 46, 6, p. 3130 - 3150. 10.1214/17-AOS1653

View/Open
1611.09744.pdf (245.3Kb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
Annals of Statistics
Volume
46
Number
6
Publisher
Institute of Mathematical Statistics
Pages
3130 - 3150
Publication identifier
10.1214/17-AOS1653
Metadata
Show full item record
Author(s)
Collier, Olivier
Modélisation aléatoire de Paris X [MODAL'X]
Comminges, Laëtitia
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Tsybakov, Alexandre
Centre de Recherche en Économie et Statistique [CREST]
Verzelen, Nicolas
Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie [MISTEA]
Abstract (EN)
We consider the problem of estimation of a linear functional in the Gaussian sequence model where the unknown vector theta is an element of R-d belongs to a class of s-sparse vectors with unknown s. We suggest an adaptive estimator achieving a nonasymptotic rate of convergence that differs from the minimax rate at most by a logarithmic factor. We also show that this optimal adaptive rate cannot be improved when s is unknown. Furthermore, we address the issue of simultaneous adaptation to s and to the variance sigma(2) of the noise. We suggest an estimator that achieves the optimal adaptive rate when both s and sigma(2) are unknown.
Subjects / Keywords
Nonasymptotic minimax estimation; adaptive estimation; linear functional; sparsity; unknown noise variance

Related items

Showing items related by title and author.

  • Thumbnail
    Minimax estimation of linear and quadratic functionals on sparsity classes 
    Collier, Olivier; Comminges, Laëtitia; Tsybakov, Alexandre (2017) Article accepté pour publication ou publié
  • Thumbnail
    Some effects in adaptive robust estimation under sparsity 
    Collier, Olivier; Comminges, Laëtitia; Tsybakov, Alexandre (2018) Document de travail / Working paper
  • Thumbnail
    Estimation of the ℓ2-norm and testing in sparse linear regression with unknown variance 
    Carpentier, Alexandra; Collier, Olivier; Comminges, Laëtitia; Tsybakov, Alexandre B.; Wang, Y. (2022) Article accepté pour publication ou publié
  • Thumbnail
    On estimation of nonsmooth functionals of sparse normal means 
    Collier, Olivier; Comminges, Laëtitia; Tsybakov, Alexandre B. (2020-08) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive robust estimation in sparse vector model 
    Comminges, Laëtitia; Collier, Olivier; Ndaoud, Mohamed; Tsybakov, Alexandre (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo