A feasible direction algorithm for general nonlinear semidefinite programming
Roche, Jean-Rodolphe; Herskovits, José; Bazán, Elmer; Zuniga, Andrés (2017), A feasible direction algorithm for general nonlinear semidefinite programming, Structural and Multidisciplinary Optimization, 55, 4, p. 1261-1279. 10.1007/s00158-016-1564-5
Type
Article accepté pour publication ou publiéDate
2017Nom de la revue
Structural and Multidisciplinary OptimizationVolume
55Numéro
4Éditeur
Springer
Pages
1261-1279
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Roche, Jean-RodolpheInstitut Élie Cartan de Lorraine [IECL]
Herskovits, José
Otimização Multidisciplinar em Engenharia [OptimizE / COPPE-UFRJ]
Bazán, Elmer
Otimização Multidisciplinar em Engenharia [OptimizE / COPPE-UFRJ]
Zuniga, Andrés

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Résumé (EN)
This paper deals with nonlinear smooth optimization problems with equality and inequality constraints, as well as semidefinite constraints on nonlinear symmetric matrix-valued functions. A new semidefinite programming algorithm that takes advantage of the structure of the matrix constraints is presented. This one is relevant in applications where the matrices have a favorable structure, as in the case when finite element models are employed. FDIPA_GSDP is then obtained by integration of this new method with the well known Feasible Direction Interior Point Algorithm for nonlinear smooth optimization, FDIPA. FDIPA_GSDP makes iterations in the primal and dual variables to solve the first order optimality conditions. Given an initial feasible point with respect to the inequality constraints, FDIPA_GSDP generates a feasible descent sequence, converging to a local solution of the problem. At each iteration a feasible descent direction is computed by merely solving two linear systems with the same matrix. A line search along this direction looks for a new feasible point with a lower objective. Global convergence to stationary points is proved. Some structural optimization test problems were solved very efficiently, without need of parameters tuning.Mots-clés
Nonlinear optimization; Semidefinite programming; Feasible directions; Interior-point methods; Structural optimizationPublications associées
Affichage des éléments liés par titre et auteur.
-
Dolbeault, Jean; Zuniga, Andres (2022) Document de travail / Working paper
-
Alessio, Francesca; Montecchiari, Piero; Zuniga, Andrés (2019) Article accepté pour publication ou publié
-
Rodolphe, François; Marin, Jean-Michel; Taly, Jean-François; Grelaud, Aude; Robert, Christian P. (2009) Communication / Conférence
-
Caceres, Maria J.; Dolbeault, Jean; Carrillo, José A. (2003) Article accepté pour publication ou publié
-
Juengel, Ansgar; Gentil, Ivan; Dolbeault, Jean; Carrillo, José A. (2006) Article accepté pour publication ou publié