• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Edge states in ordinary differential equations for dislocations

Gontier, David (2020), Edge states in ordinary differential equations for dislocations, Journal of Mathematical Physics, 61, 4. 10.1063/1.5128886

View/Open
1908.01377.pdf (462.4Kb)
Type
Article accepté pour publication ou publié
Date
2020-04
Journal name
Journal of Mathematical Physics
Volume
61
Number
4
Publisher
American Institute of Physics
Publication identifier
10.1063/1.5128886
Metadata
Show full item record
Author(s)
Gontier, David cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this article, we study Schrödinger operators on the real line, when the external potential represents a dislocation in a periodic medium. We study how the spectrum varies with the dislocation parameter. We introduce several integer-valued indices, including the Chern number for bulk indices, and various spectral flows for edge indices. We prove that all these indices coincide, providing a proof of a bulk-edge correspondence in this case. The study is also made for dislocations in Dirac models on the real line. We prove that 0 is always an eigenvalue of such operators.
Subjects / Keywords
Operator theory; Functional analysis; Hellmann Feynman theorem; Dirac equation; Hill equation; Quantum mechanical operators

Related items

Showing items related by title and author.

  • Thumbnail
    Edge states for second order elliptic operators 
    Gontier, David (2021) Document de travail / Working paper
  • Thumbnail
    A remark on the critical explosion parameter for a semilinear elliptic equation in a generic domain using an explosion time of an ordinary differential equation 
    Dolbeault, Jean; Poupaud, F. (1995) Article accepté pour publication ou publié
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions: Existence of Ground States 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
  • Thumbnail
    The Nonlinear Schrödinger Equation for Orthonormal Functions : Existence of Ground States 
    Gontier, David; Lewin, Mathieu; Nazar, Faizan Q. (2021) Article accepté pour publication ou publié
  • Thumbnail
    The nonlinear Schrödinger equation for orthonormal functions: II. Application to Lieb-Thirring inequalities 
    Frank, Rupert L.; Gontier, David; Lewin, Mathieu (2020) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo