• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Parameterized Power Vertex Cover

Angel, Eric; Bampis, Evripidis; Escoffier, Bruno; Lampis, Michael (2018), Parameterized Power Vertex Cover, Discrete Mathematics and Theoretical Computer Science, 20, 2. 10.23638/DMTCS-20-2-10

View/Open
Parameterized_Power.pdf (386.9Kb)
Type
Article accepté pour publication ou publié
Date
2018
Journal name
Discrete Mathematics and Theoretical Computer Science
Volume
20
Number
2
Publisher
DMTCS
Publication identifier
10.23638/DMTCS-20-2-10
Metadata
Show full item record
Author(s)
Angel, Eric

Bampis, Evripidis

Escoffier, Bruno
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lampis, Michael cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study a recently introduced generalization of the Vertex Cover (VC) problem, called Power Vertex Cover (PVC). In this problem, each edge of the input graph is supplied with a positive integer demand. A solution is an assignment of (power) values to the vertices, so that for each edge one of its endpoints has value as high as the demand, and the total sum of power values assigned is minimized. We investigate how this generalization affects the parameterized complexity of Vertex Cover. On the positive side, when parameterized by the value of the optimal P, we give an O*(1.274^P)-time branching algorithm (O* is used to hide factors polynomial in the input size), and also an O*(1.325^P)-time algorithm for the more general asymmetric case of the problem, where the demand of each edge may differ for its two endpoints. When the parameter is the number of vertices k that receive positive value, we give O*(1.619^k) and O*(k^k)-time algorithms for the symmetric and asymmetric cases respectively, as well as a simple quadratic kernel for the asymmetric case. We also show that PVC becomes significantly harder than classical VC when parameterized by the graph's treewidth t. More specifically, we prove that unless the ETH is false, there is no n^o(t)-time algorithm for PVC. We give a method to overcome this hardness by designing an FPT approximation scheme which gives a (1+epsilon)-approximation to the optimal solution in time FPT in parameters t and 1/epsilon.
Subjects / Keywords
Power vertex cover; Parameterized complexity; Treewidth; Parameterized approximation

Related items

Showing items related by title and author.

  • Thumbnail
    Parameterized Power Vertex Cover 
    Angel, Eric; Bampis, Evripidis; Escoffier, Bruno; Lampis, Michael (2016) Communication / Conférence
  • Thumbnail
    Multistage Matchings 
    Bampis, Evripidis; Escoffier, Bruno; Lampis, Michael; Paschos, Vangelis (2018) Communication / Conférence
  • Thumbnail
    Approximation polynomiale avec garantie de performance pour l'optimisation multicritère 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2007) Chapitre d'ouvrage
  • Thumbnail
    On the hitting set of bundles problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2007) Document de travail / Working paper
  • Thumbnail
    On the Minimum Hitting Set of Bundles Problem 
    Angel, Eric; Bampis, Evripidis; Gourvès, Laurent (2008) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo