
Approximating MAX SAT by Moderately Exponential and Parameterized Algorithms
Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2014), Approximating MAX SAT by Moderately Exponential and Parameterized Algorithms, Theoretical Computer Science, 560, 2, p. 147-157. 10.1016/j.tcs.2014.10.039
View/ Open
Type
Article accepté pour publication ou publiéDate
2014Journal name
Theoretical Computer ScienceVolume
560Number
2Publisher
Elsevier
Pages
147-157
Publication identifier
Metadata
Show full item recordAuthor(s)
Escoffier, BrunoLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Paschos, Vangelis
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Tourniaire, Emeric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We study approximation of the max sat problem by moderately exponential algorithms. The general goal of the issue of moderately exponential approximation is to catch-up on polynomial inapproximability, by providing algorithms achieving, with worst-case running times importantly smaller than those needed for exact computation, approximation ratios unachievable in polynomial time. We develop several approximation techniques that can be applied to max sat in order to get approximation ratios arbitrarily close to 1.Subjects / Keywords
Exponential time algorithms; Approximation algorithms; Max SATRelated items
Showing items related by title and author.
-
Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012) Communication / Conférence
-
Bourgeois, Nicolas; Escoffier, Bruno; Paschos, Vangelis (2011) Article accepté pour publication ou publié
-
Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012) Document de travail / Working paper
-
Bonnet, Édouard; Escoffier, Bruno; Paschos, Vangelis; Tourniaire, Emeric (2012) Document de travail / Working paper
-
Paschos, Vangelis; Escoffier, Bruno; Bourgeois, Nicolas (2009) Article accepté pour publication ou publié