• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Human-in-the-Loop Schema Inference for Massive JSON Datasets

Baazizi, Mohamed-Amine; Berti, Clément; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2020), Human-in-the-Loop Schema Inference for Massive JSON Datasets, EDBT 2020 - 23nd International Conference on Extending Database Technology, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, p. 635-638. 10.5441/002/edbt.2020.82

View/Open
Human-in-the-Loop.pdf (585.3Kb)
Type
Communication / Conférence
Date
2020
Conference title
23rd International Conference on Extending Database Technology, EDBT 2020
Conference date
2020
Conference country
DENMARK
Book title
EDBT 2020 - 23nd International Conference on Extending Database Technology
Publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
ISBN
978-3-89318-083-7
Pages
635-638
Publication identifier
10.5441/002/edbt.2020.82
Metadata
Show full item record
Author(s)
Baazizi, Mohamed-Amine
Berti, Clément
Colazzo, Dario
Ghelli, Giorgio
Sartiani, Carlo
Abstract (EN)
JSON established itself as a popular data format for representing data whose structure is irregular or unknown a priori. JSON collections are usually massive and schema-less. Inferring a schema describing the structure of these collections is crucial for formulating meaningful queries and for adopting schema-based optimizations. In a recent work, we proposed a Map/Reduce schema inference approach that either infers a compact representation of the input collection or a precise description of every possible shape in the data. Since no level of precision is ideal, it is more appealing to give the analyst the freedom of choosing between different levels of precisions in an interactive fashion. In this paper we describe a schema inference system offering this important functionality.
Subjects / Keywords
JSON

Related items

Showing items related by title and author.

  • Thumbnail
    Parametric schema inference for massive JSON datasets 
    Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Article accepté pour publication ou publié
  • Thumbnail
    Inférence de Schémas pour Données JSON Massives 
    Baazizi, Mohamed-Amine; Ben Lahmar, Houssem; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2016) Communication / Conférence
  • Thumbnail
    A Type System for Interactive JSON Schema Inference (Extended Abstract) 
    Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Communication / Conférence
  • Thumbnail
    Schemas And Types For JSON Data 
    Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Communication / Conférence
  • Thumbnail
    Schemas and Types for JSON Data: From Theory to Practice 
    Baazizi, Mohamed-Amine; Colazzo, Dario; Ghelli, Giorgio; Sartiani, Carlo (2019) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo