Show simple item record

dc.contributor.authorGastineau, Nicolas
dc.contributor.authorHolub, Přemysl
dc.contributor.authorTogni, Olivier
HAL ID: 176274
ORCID: 0000-0001-9510-3595
dc.date.accessioned2020-09-29T15:07:48Z
dc.date.available2020-09-29T15:07:48Z
dc.date.issued2019
dc.identifier.issn0166-218X
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/21007
dc.language.isoenen
dc.subjectPacking colouring
dc.subjectPacking chromatic number
dc.subjectOuterplanar graphs
dc.subjectSubcubic graphs
dc.subject.ddc511en
dc.titleOn the packing chromatic number of subcubic outerplanar graphs
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenAlthough it has recently been proved that the packing chromatic number is unbounded on the class of subcubic graphs, there exist subclasses in which the packing chromatic number is finite (and small). These subclasses include subcubic trees, base-3 Sierpiński graphs and hexagonal lattices. In this paper we are interested in the packing chromatic number of subcubic outerplanar graphs. We provide asymptotic bounds depending on structural properties of the outerplanar graphs and determine sharper bounds for some classes of subcubic outerplanar graphs.
dc.relation.isversionofjnlnameDiscrete Applied Mathematics
dc.relation.isversionofjnlvol255
dc.relation.isversionofjnldate2019
dc.relation.isversionofjnlpages209-221
dc.relation.isversionofdoi10.1016/j.dam.2018.07.034
dc.identifier.urlsitehttps://arxiv.org/abs/1703.05023v3
dc.relation.isversionofjnlpublisherElsevier
dc.subject.ddclabelPrincipes généraux des mathématiquesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenon
dc.description.halcandidatenon
dc.description.readershiprecherche
dc.description.audienceInternational
dc.relation.Isversionofjnlpeerreviewedoui
dc.date.updated2020-09-30T10:13:15Z


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record