Grundy Coloring & Friends, Half-Graphs, Bicliques
Aboulker, Pierre; Bonnet, Edouard; Kim, Eun Jung; Sikora, Florian (2020), Grundy Coloring & Friends, Half-Graphs, Bicliques, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, p. 58:1-58:18. 10.4230/LIPIcs.STACS.2020.58
Type
Communication / ConférenceLien vers un document non conservé dans cette base
https://dx.doi.org/10.4230/LIPIcs.STACS.2020.58Date
2020Titre du colloque
37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)Date du colloque
2020-03Pays du colloque
FRANCETitre de l'ouvrage
37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)Éditeur
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Isbn
978-3-95977-140-5
Pages
58:1-58:18
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order σ, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering σ, i.e., the maximum number of colors that the first-fit coloring requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring has been examined for its structural and algorithmic aspects. A brute-force f(k)n^{2^{k-1}}-time algorithm for Grundy Coloring on general graphs is not difficult to obtain, where k is the number of colors required by the most adversarial vertex ordering. It was asked several times whether the dependency on k in the exponent of n can be avoided or reduced, and its answer seemed elusive until now. We prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal under the Exponential Time Hypothesis, thus settling this question by the negative. The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open question by Panolan et al. [JCSS '17]. A natural follow-up question is, how the parameterized complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability on K_{t,t}-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward answering this question. The key combinatorial lemma underlying the tractability result might be of independent interest.Publications associées
Affichage des éléments liés par titre et auteur.
-
Aboulker, Pierre; Bonnet, Edouard; Kim, Eun Jung; Sikora, Florian (2023) Article accepté pour publication ou publié
-
Bonnet, Édouard; Foucaud, Florent; Kim, Eun Jung; Sikora, Florian (2015) Communication / Conférence
-
Bonnet, Édouard; Foucaud, Florent; Kim, Eun Jung; Sikora, Florian (2018) Article accepté pour publication ou publié
-
Bonamy, Marthe; Bonnet, Edouard; Bousquet, Nicolas; Charbit, Pierre; Giannopoulos, Panos; Kim, Eun Jung; Rzążewski, P.; Sikora, Florian; Thomassé, S. (2021) Article accepté pour publication ou publié
-
Bonnet, Édouard; Giannopoulos, Panos; Kim, Eun Jung; Rzążewski, Pawel; Sikora, Florian (2018) Communication / Conférence