An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion
Paul, Christophe; Kim, Eun Jung; Kanté, Mamadou Moustapha; Kwon, O-joung (2015), An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion, IPEC: International symposium on Parameterized and Exact Computation, Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, p. 139-150. 10.4230/LIPIcs.IPEC.2015.138
Type
Communication / ConférenceExternal document link
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01264011Date
2015Conference title
10th International Symposium on Parameterized and Exact Computation (IPEC 2015)Conference date
2015-09Conference city
PatrasConference country
GreeceBook title
IPEC: International symposium on Parameterized and Exact ComputationPublisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
ISBN
978-3-95977-140-5
Pages
139-150
Publication identifier
Metadata
Show full item recordAuthor(s)
Paul, ChristopheKim, Eun Jung
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Kanté, Mamadou Moustapha

Kwon, O-joung
Abstract (EN)
Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approxi-mating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006.], and it is similar to pathwidth, which is the linearized variant of treewidth. Motivated from the results on graph modification problems into graphs of bounded treewidth or pathwidth, we investigate a graph modification problem into the class of graphs having linear rankwidth at most one, called the Linear Rankwidth-1 Vertex Deletion (shortly, LRW1-Vertex Deletion). In this problem, given an n-vertex graph G and a positive integer k, we want to decide whether there is a set of at most k vertices whose removal turns G into a graph of linear rankwidth at most one and if one exists, find such a vertex set. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f (k) · n 3 for some function f , it is not clear whether this problem allows a runtime with a modest exponential function. We establish that LRW1-Vertex Deletion can be solved in time 8 k · n O(1). The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define the necklace graphs and investigate their structural properties. We also show that the LRW1-Vertex Deletion has a polynomial kernel.Subjects / Keywords
(linear) rankwidth; Distance-hereditary graphs; Thread graphs; Parameterized complexity; KernelizationRelated items
Showing items related by title and author.
-
Kanté, Mamadou Moustapha; Kim, Eun Jung; Kwon, O-joung; Paul, Christophe (2017) Article accepté pour publication ou publié
-
Kanté, Mamadou Moustapha; Kim, Eun Jung; Kwon, O-joung; Oum, Sang-Il (2023) Article accepté pour publication ou publié
-
Kim, Eun Jung; Kwon, O-joung (2018) Communication / Conférence
-
Kim, Eun Jung; Kwon, O-Joung (2020) Article accepté pour publication ou publié
-
Kim, Eun Jung; Langer, Alexander; Paul, Christophe; Reidl, Felix; Rossmanith, Peter; Sau Valls, Ignasi (2016) Article accepté pour publication ou publié