An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion
hal.structure.identifier | ||
dc.contributor.author | Paul, Christophe
HAL ID: 4726 | |
hal.structure.identifier | Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE] | |
dc.contributor.author | Kim, Eun Jung | |
hal.structure.identifier | ||
dc.contributor.author | Kanté, Mamadou Moustapha
HAL ID: 172339 ORCID: 0000-0003-1838-7744 | |
hal.structure.identifier | ||
dc.contributor.author | Kwon, O-joung | |
dc.date.accessioned | 2020-09-30T10:08:30Z | |
dc.date.available | 2020-09-30T10:08:30Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/21021 | |
dc.language.iso | en | en |
dc.subject | (linear) rankwidth | en |
dc.subject | Distance-hereditary graphs | en |
dc.subject | Thread graphs | en |
dc.subject | Parameterized complexity | en |
dc.subject | Kernelization | en |
dc.subject.ddc | 511 | en |
dc.title | An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion | en |
dc.type | Communication / Conférence | |
dc.description.abstracten | Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour [Approxi-mating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006.], and it is similar to pathwidth, which is the linearized variant of treewidth. Motivated from the results on graph modification problems into graphs of bounded treewidth or pathwidth, we investigate a graph modification problem into the class of graphs having linear rankwidth at most one, called the Linear Rankwidth-1 Vertex Deletion (shortly, LRW1-Vertex Deletion). In this problem, given an n-vertex graph G and a positive integer k, we want to decide whether there is a set of at most k vertices whose removal turns G into a graph of linear rankwidth at most one and if one exists, find such a vertex set. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time f (k) · n 3 for some function f , it is not clear whether this problem allows a runtime with a modest exponential function. We establish that LRW1-Vertex Deletion can be solved in time 8 k · n O(1). The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define the necklace graphs and investigate their structural properties. We also show that the LRW1-Vertex Deletion has a polynomial kernel. | en |
dc.identifier.citationpages | 139-150 | en |
dc.relation.ispartoftitle | IPEC: International symposium on Parameterized and Exact Computation | en |
dc.relation.ispartofpublname | Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik | en |
dc.identifier.urlsite | https://hal-lirmm.ccsd.cnrs.fr/lirmm-01264011 | en |
dc.subject.ddclabel | Principes généraux des mathématiques | en |
dc.relation.ispartofisbn | 978-3-95977-140-5 | en |
dc.relation.conftitle | 10th International Symposium on Parameterized and Exact Computation (IPEC 2015) | en |
dc.relation.confdate | 2015-09 | |
dc.relation.confcity | Patras | en |
dc.relation.confcountry | Greece | en |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.4230/LIPIcs.IPEC.2015.138 | en |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.relation.Isversionofjnlpeerreviewed | non | en |
dc.date.updated | 2020-09-25T14:02:17Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |