On S-packing edge-colorings of cubic graphs
Gastineau, Nicolas; Togni, Olivier (2019), On S-packing edge-colorings of cubic graphs, Discrete Applied Mathematics, 259, p. 63-75. 10.1016/j.dam.2018.12.035
Type
Article accepté pour publication ou publiéExternal document link
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01651260Date
2019Journal name
Discrete Applied MathematicsVolume
259Publisher
Elsevier
Pages
63-75
Publication identifier
Metadata
Show full item recordAuthor(s)
Gastineau, NicolasLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Togni, Olivier

Abstract (EN)
Given a non-decreasing sequence S = (s 1,s 2,. .. ,s k) of positive integers, an S-packing edge-coloring of a graph G is a partition of the edge set of G into k subsets {X 1 ,X 2,. .. ,X k } such that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e ′ ∈ X i is at least s i + 1. This paper studies S-packing edge-colorings of cubic graphs. Among other results, we prove that cubic graphs having a 2-factor are (1,1,1,3,3)-packing edge-colorable, (1,1,1,4,4,4,4,4)-packing edge-colorable and (1,1,2,2,2,2,2)-packing edge-colorable. We determine sharper results for cubic graphs of bounded oddness and 3-edge-colorable cubic graphs and we propose many open problems.Subjects / Keywords
Cubic graph; Packing chromatic index; S-packing chromatic index; Snark; d,-distance coloringRelated items
Showing items related by title and author.
-
Gastineau, Nicolas; Holub, Přemysl; Togni, Olivier (2019) Article accepté pour publication ou publié
-
Bourgeois, Nicolas; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2010) Article accepté pour publication ou publié
-
Bourgeois, Nicolas; Lucarelli, Giorgio; Milis, Ioannis; Paschos, Vangelis (2009) Communication / Conférence
-
Ries, Bernard (2010) Article accepté pour publication ou publié
-
Dereniowski, Dariusz; Kubiak, W.; Ries, Bernard; Zwols, Yori (2013) Article accepté pour publication ou publié