Show simple item record

hal.structure.identifierLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
dc.contributor.authorGastineau, Nicolas
hal.structure.identifier
dc.contributor.authorTogni, Olivier
HAL ID: 176274
ORCID: 0000-0001-9510-3595
dc.date.accessioned2020-09-30T10:23:09Z
dc.date.available2020-09-30T10:23:09Z
dc.date.issued2019
dc.identifier.issn0166-218X
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/21022
dc.language.isoenen
dc.subjectCubic graphen
dc.subjectPacking chromatic indexen
dc.subjectS-packing chromatic indexen
dc.subjectSnarken
dc.subjectd,-distance coloringen
dc.subject.ddc511en
dc.titleOn S-packing edge-colorings of cubic graphsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenGiven a non-decreasing sequence S = (s 1,s 2,. .. ,s k) of positive integers, an S-packing edge-coloring of a graph G is a partition of the edge set of G into k subsets {X 1 ,X 2,. .. ,X k } such that for each 1 ≤ i ≤ k, the distance between two distinct edges e, e ′ ∈ X i is at least s i + 1. This paper studies S-packing edge-colorings of cubic graphs. Among other results, we prove that cubic graphs having a 2-factor are (1,1,1,3,3)-packing edge-colorable, (1,1,1,4,4,4,4,4)-packing edge-colorable and (1,1,2,2,2,2,2)-packing edge-colorable. We determine sharper results for cubic graphs of bounded oddness and 3-edge-colorable cubic graphs and we propose many open problems.en
dc.relation.isversionofjnlnameDiscrete Applied Mathematics
dc.relation.isversionofjnlvol259en
dc.relation.isversionofjnldate2019-04
dc.relation.isversionofjnlpages63-75en
dc.relation.isversionofdoi10.1016/j.dam.2018.12.035en
dc.identifier.urlsitehttps://hal-univ-bourgogne.archives-ouvertes.fr/hal-01651260en
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelPrincipes généraux des mathématiquesen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen
dc.description.ssrncandidatenonen
dc.description.halcandidatenonen
dc.description.readershiprechercheen
dc.description.audienceInternationalen
dc.relation.Isversionofjnlpeerreviewedouien
dc.relation.Isversionofjnlpeerreviewedouien
dc.date.updated2020-09-30T10:21:39Z
hal.author.functionaut
hal.author.functionaut


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record