• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation

Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2020), Explicit constants in Harnack inequalities and regularity estimates, with an application to the fast diffusion equation. https://basepub.dauphine.fr/handle/123456789/21088

View/Open
BDNS2020b.pdf (615.3Kb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02887013
Date
2020
Series title
Cahier de recherche du CEREMADE
Pages
55
Metadata
Show full item record
Author(s)
Bonforte, Matteo
Departamento de Matemáticas
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Nazaret, Bruno
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
SAMM - Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Simonov, Nikita
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper is devoted to the computation of various explicit constants in functional inequalities and regularity estimates for solutions of parabolic equations, which are not available from the literature. We provide new expressions and simplified proofs of the Harnack inequality and the corresponding Hölder continuity of the solution of a linear parabolic equation. We apply these results to the computation of a constructive estimate of a threshold time for the uniform convergence in relative error of the solution of the fast diffusion equation.
Subjects / Keywords
Moser's Harnack inequality; Intermediate asymptotics; Harnack Principle; Asymptotic behavior; Self-similar Barenblatt solutions; Stability; Entropy methods; Gagliardo-Nirenberg inequality; Fast diffusion equation; Rates of convergence

Related items

Showing items related by title and author.

  • Thumbnail
    Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity and the entropy method 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2021) Document de travail / Working paper
  • Thumbnail
    Quantitative a priori estimates for fast diffusion equations with Caffarelli–Kohn–Nirenberg weights. Harnack inequalities and Hölder continuity 
    Bonforte, Matteo; Simonov, Nikita (2019) Article accepté pour publication ou publié
  • Thumbnail
    Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities 
    Bonforte, Matteo; Dolbeault, Jean; Muratori, Matteo; Nazaret, Bruno (2017) Article accepté pour publication ou publié
  • Thumbnail
    Stability in Gagliardo-Nirenberg inequalities 
    Bonforte, Matteo; Dolbeault, Jean; Nazaret, Bruno; Simonov, Nikita (2020) Document de travail / Working paper
  • Thumbnail
    Fine properties of solutions to the Cauchy problem for a Fast Diffusion Equation with Caffarelli-Kohn-Nirenberg weights 
    Bonforte, Matteo; Simonov, Nikita (2021) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo