hal.structure.identifier | Laboratoire de Mathématiques d'Orsay [LMO] | |
dc.contributor.author | Kazeykina, Anna | |
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Ren, Zhenjie | |
hal.structure.identifier | Department of mathematics, Chinese University of Hong Kong | |
dc.contributor.author | Tan, Xiaolu | |
hal.structure.identifier | Fakultät für Mathematik [Wien] | |
dc.contributor.author | Yang, Junjian | |
dc.date.accessioned | 2020-10-08T12:28:41Z | |
dc.date.available | 2020-10-08T12:28:41Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/21090 | |
dc.language.iso | en | en |
dc.subject | mean-field Langevin dynamics | en |
dc.subject.ddc | 004 | en |
dc.title | Ergodicity of the underdamped mean-field Langevin dynamics | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | We study the long time behavior of an underdamped mean-field Langevin (MFL) equation , and provide a general convergence as well as an exponential convergence rate result under different conditions. The results on the MFL equation can be applied to study the convergence of the Hamiltonian gradient descent algorithm for the overparametrized optimization. We then provide a numerical example of the algorithm to train a generative adversarial networks (GAN). | en |
dc.identifier.citationpages | 29 | en |
dc.relation.ispartofseriestitle | Cahier de recherche CEREMADE | en |
dc.identifier.urlsite | https://hal.archives-ouvertes.fr/hal-02908790 | en |
dc.subject.ddclabel | Informatique générale | en |
dc.identifier.citationdate | 2020-07 | |
dc.description.ssrncandidate | non | en |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2020-10-08T12:25:06Z | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |
hal.author.function | aut | |