Necessary and Possible Interaction Between Criteria in a General Choquet Integral Model
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2020), Necessary and Possible Interaction Between Criteria in a General Choquet Integral Model, in Marie-Jeanne Lesot, Susana Vieira, Marek Z. Reformat, Information Processing and Management of Uncertainty in Knowledge-Based Systems, 18th International Conference, IPMU 2020, Springer, p. 457-466. 10.1007/978-3-030-50143-3_36
Type
Communication / ConférenceExternal document link
https://hal.archives-ouvertes.fr/hal-02877291Date
2020Conference title
Information Processing and Management of Uncertainty in Knowledge-Based Systems, 18th International Conference, IPMU 2020Conference date
2020Book title
Information Processing and Management of Uncertainty in Knowledge-Based Systems, 18th International Conference, IPMU 2020Book author
Marie-Jeanne Lesot, Susana Vieira, Marek Z. ReformatPublisher
Springer
ISBN
978-3-030-50143-3
Pages
457-466
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper deals with interaction between criteria in a general Choquet integral model. When the preference of the Decision Maker (DM) contains no indifference, we first give a necessary and sufficient condition for them to be representable by a Choquet integral model. Using this condition, we show that it is always possible to choose from the numerical representations, one relatively for which all the Shapley interaction indices are strictly positive. We illustrate our results with an example.Subjects / Keywords
Interaction index; General Choquet integral model; Shapley interaction indicesRelated items
Showing items related by title and author.
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2021) Article accepté pour publication ou publié
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2022) Article accepté pour publication ou publié
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2021) Communication / Conférence
-
Mayag, Brice; Bouyssou, Denis (2020) Article accepté pour publication ou publié
-
Kaldjob Kaldjob, Paul Alain; Mayag, Brice; Bouyssou, Denis (2022) Document de travail / Working paper