Critical extreme points of the 2-edge connected subgraph polytope
Fonlupt, Jean; Mahjoub, Ali Ridha (2006), Critical extreme points of the 2-edge connected subgraph polytope, Mathematical Programming, 105, 2-3, p. 289-310. http://dx.doi.org/10.1007/s10107-005-0654-8
Type
Article accepté pour publication ou publiéDate
2006Journal name
Mathematical ProgrammingVolume
105Number
2-3Publisher
Springer Berlin
Pages
289-310
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we study the extreme points of the polytope P(G), the linear relaxation of the 2-edge connected spanning subgraph polytope of a graph G. We introduce a partial ordering on the extreme points of P(G) and give necessary conditions for a non-integer extreme point of P(G) to be minimal with respect to that ordering. We show that, if X is a non-integer minimal extreme point of P(G), then G and X can be reduced, by means of some reduction operations, to a graph G' and an extreme point X of P(G') where G' and X'satisfy some simple properties. As a consequence we obtain a characterization of the perfectly 2-edge connected graphs, the graphs for which the polytope P(G) is integral.Subjects / Keywords
Polytope; Cut - 2-edge connected graph; Critical extreme pointRelated items
Showing items related by title and author.
-
Fonlupt, Jean; Mahjoub, Ali Ridha (1999) Communication / Conférence
-
Didi Biha, Mohamed; Mahjoub, Ali Ridha (2004) Article accepté pour publication ou publié
-
Mahjoub, Ali Ridha; Pesneau, Pierre (2008) Article accepté pour publication ou publié
-
Mahjoub, Ali Ridha; Nocq, Charles (1999) Article accepté pour publication ou publié
-
Baïou, Mourad; Mahjoub, Ali Ridha (1997) Article accepté pour publication ou publié