• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Conformal bootstrap in Liouville theory

Guillarmou, Colin; Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent (2020), Conformal bootstrap in Liouville theory. https://basepub.dauphine.fr/handle/123456789/21163

View/Open
ScatteringWritingSqrt2.pdf (1.338Mb)
Type
Document de travail / Working paper
External document link
https://hal.archives-ouvertes.fr/hal-02866510
Date
2020
Series title
Cahier de recherche CEREMADE
Pages
88
Metadata
Show full item record
Author(s)
Guillarmou, Colin cc
Laboratoire Jean Alexandre Dieudonné [JAD]
Kupiainen, Antti
Department of Mathematics and Statistics [Helsinki]
Rhodes, Rémi
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Vargas, Vincent
Laboratoire de Probabilités et Modèles Aléatoires [LPMA]
Abstract (EN)
Liouville conformal field theory (denoted LCFT) is a 2-dimensional conformal field theory depending on a parameter γ ∈ R and studied since the eighties in theoretical physics. In the case of the theory on the 2-sphere, physicists proposed closed formulae for the n-point correlation functions using symmetries and representation theory, called the DOZZ formula (for n = 3) and the conformal bootstrap (for n > 3). In a recent work, the three last authors introduced with F. David a probabilistic construction of LCFT for γ ∈ (0, 2] and proved the DOZZ formula for this construction. In this sequel work, we give the first mathematical proof that the probabilistic construction of LCFT on the 2-sphere is equivalent to the conformal bootstrap for γ ∈ (0, √ 2). Our proof combines the analysis of a natural semi-group, tools from scattering theory and the use of the Virasoro algebra in the context of the probabilistic approach (the so-called conformal Ward identities).
Subjects / Keywords
Liouville theory

Related items

Showing items related by title and author.

  • Thumbnail
    Large deviations for random surfaces: the hyperbolic nature of Liouville Field Theory 
    Vargas, Vincent; Rhodes, Rémi; Lacoin, Hubert (2014) Document de travail / Working paper
  • Thumbnail
    Liouville Brownian motion at criticality 
    Rhodes, Rémi; Vargas, Vincent (2015) Article accepté pour publication ou publié
  • Thumbnail
    Liouville Brownian motion 
    Garban, Christophe; Rhodes, Rémi; Vargas, Vincent (2016) Article accepté pour publication ou publié
  • Thumbnail
    On the heat kernel and the Dirichlet form of the Liouville Brownian motion 
    Vargas, Vincent; Rhodes, Rémi; Garban, Christophe (2014) Article accepté pour publication ou publié
  • Thumbnail
    Spectral dimension of Liouville quantum gravity 
    Vargas, Vincent; Rhodes, Rémi (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo